Border basis: a useful tool for constructions in Algebra

M.E. Alonso (from joints paper with H. Lombardi and, Brachat, Mourrain)

UCM, Madrid, Spain

HenriFest, Besancon, 15-16th October 2011

• Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ► These methods are not stable under perturbation:

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations.

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?
 - As a tool for Constructions in Algebraic Geometry : one likes to have constructions that specializes from A to the residual $k = A/\mathfrak{m}$.

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ► These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?
 - As a tool for Constructions in Algebraic Geometry : one likes to have constructions that specializes from A to the residual $k = A/\mathfrak{m}$. Sometimes this allows dynamical arguments.

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?
 - As a tool for Constructions in Algebraic Geometry : one likes to have constructions that specializes from A to the residual $k = A/\mathfrak{m}$. Sometimes this allows dynamical arguments.
- ▶ These methods are stable under perturbation:

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?
 - As a tool for Constructions in Algebraic Geometry : one likes to have constructions that specializes from A to the residual k = A/m. Sometimes this allows dynamical arguments.
- ▶ These methods are stable under perturbation:
 - Resultants, Border basis: Cartan 1945; Kuranishi 1957;

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- ▶ These methods are not stable under perturbation: Drawbacks:
 - In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output?
 - As a tool for Constructions in Algebraic Geometry : one likes to have constructions that specializes from A to the residual k = A/m. Sometimes this allows dynamical arguments.
- ▶ These methods are stable under perturbation:
 - Resultants, Border basis: Cartan 1945; Kuranishi 1957;
 Mourrain, Trébuchet: 1999 -2008; and Kehrein, Kreuzer,
 Robbiano: 2005-2008.

Border basis

- Border basis
- Platness and Border bases

- Border basis
- Platness and Border bases
- 3 Elementary construction of $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$

- Border basis
- Platness and Border bases

▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).
 - ▶ Denote $B^+ = x_1 B \cup \cdots \cup x_n B \cup B$ and $\partial B = B^+ B$.

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).
 - ▶ Denote $B^+ = x_1 B \cup \cdots \cup x_n B \cup B$ and $\partial B = B^+ B$.
- \blacktriangleright Let A be a local ring with maximal ideal \mathfrak{m} and residue field

 $\mathbb{K} := A/\mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A[x_1,...,x_n]$ that is a flat A-module; hence a free A-module.

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).
 - ▶ Denote $B^+ = x_1 B \cup \cdots \cup x_n B \cup B$ and $\partial B = B^+ B$.
- ▶ Let A be a local ring with maximal ideal m and residue field
- $\mathbb{K} := A/\mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A[x_1,...,x_n]$ that is a flat A-module; hence a free A-module.
- Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B.

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).
 - ▶ Denote $B^+ = x_1 B \cup \cdots \cup x_n B \cup B$ and $\partial B = B^+ B$.
- \blacktriangleright Let A be a local ring with maximal ideal $\mathfrak m$ and residue field

 $\mathbb{K} := A/\mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A[x_1,...,x_n]$ that is a flat A-module; hence a free A-module.

Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha,\beta} \in A$ $(\beta \in B)$ s.t.

$$h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}) := \underline{\mathbf{x}}^{\alpha} - \sum_{\beta \in B} z_{\alpha,\beta} \, \underline{\mathbf{x}}^{\beta} \equiv 0$$

- ▶ Let B be set of μ monomials in $x = (x_1, ..., x_n)$. We identify B with a set of \mathbb{N}^n .
- ▶ We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i : x^{\alpha}/x_i \in B$).
- ▶ Denote $B^+ = x_1 B \cup \cdots \cup x_n B \cup B$ and $\partial B = B^+ B$.
- ightharpoonup Let A be a local ring with maximal ideal $\mathfrak m$ and residue field

 $\mathbb{K} := A/\mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A[x_1,...,x_n]$ that is a flat A-module; hence a free A-module.

Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha,\beta} \in A$ $(\beta \in B)$ s.t.

$$h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}) := \underline{\mathbf{x}}^{\alpha} - \sum_{\beta \in B} z_{\alpha,\beta} \, \underline{\mathbf{x}}^{\beta} \equiv 0$$

. The $h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})$ will be called, the border relations of \mathcal{A} w.r.t. \mathcal{B} .

► These border relations, are re-writing rules: N^z

► These border relations, are re-writing rules: N^z

For
$$eta \in \mathcal{B}$$
, $\mathit{N}^{\mathbf{z}}(\underline{\mathbf{x}}^{eta}) = \underline{\mathbf{x}}^{eta}$,

For
$$\alpha \in \partial B$$
. $N^{\mathbf{z}}(\underline{\mathbf{x}}^{\alpha}) = \underline{\mathbf{x}}^{\alpha} - h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}) = \sum_{\beta \in B} z_{\alpha,\beta} \ \underline{\mathbf{x}}^{\beta}$

- ► These border relations, are re-writing rules: $N^{\mathbf{z}}$ For $\beta \in B$, $N^{\mathbf{z}}(\underline{\mathbf{x}}^{\beta}) = \underline{\mathbf{x}}^{\beta}$, For $\alpha \in \partial B$. $N^{\mathbf{z}}(\underline{\mathbf{x}}^{\alpha}) = \underline{\mathbf{x}}^{\alpha} - h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}) = \sum_{\beta \in B} z_{\alpha,\beta} \underline{\mathbf{x}}^{\beta}$
- ▶ The tables of multiplication $M_{x_i}^{\mathbf{z}}: \langle B \rangle \to \langle B \rangle$ are constructed using $M_{x_i}^{\mathbf{z}}(\underline{\mathbf{x}}^\beta) = N^{\mathbf{z}}(x_i\underline{\mathbf{x}}^\beta)$ for $\beta \in B$.

- ► These border relations, are re-writing rules: N^z For $\beta \in B$, $N^z(\underline{\mathbf{x}}^\beta) = \underline{\mathbf{x}}^\beta$, For $\alpha \in \partial B$. $N^z(\underline{\mathbf{x}}^\alpha) = \underline{\mathbf{x}}^\alpha - h^z_\alpha(\underline{\mathbf{x}}) = \sum_{\beta \in B} z_{\alpha,\beta} \underline{\mathbf{x}}^\beta$
- ▶ The tables of multiplication $M_{x_i}^{\mathbf{z}}:\langle B\rangle \to \langle B\rangle$ are constructed using $M_{x_i}^{\mathbf{z}}(\underline{\mathbf{x}}^\beta)=N^{\mathbf{z}}(x_i\underline{\mathbf{x}}^\beta)$ for $\beta\in B$. These operators of multiplication commute.

- These border relations, are re-writing rules: $N^{\mathbf{z}}$ For $\beta \in B$, $N^{\mathbf{z}}(\underline{\mathbf{x}}^{\beta}) = \underline{\mathbf{x}}^{\beta}$, For $\alpha \in \partial B$. $N^{\mathbf{z}}(\underline{\mathbf{x}}^{\alpha}) = \underline{\mathbf{x}}^{\alpha} - h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}) = \sum_{\beta \in B} z_{\alpha,\beta} \underline{\mathbf{x}}^{\beta}$
- ▶ The tables of multiplication $M_{x_i}^{\mathbf{z}}:\langle B\rangle \to \langle B\rangle$ are constructed using $M_{x_i}^{\mathbf{z}}(\underline{\mathbf{x}}^\beta) = N^{\mathbf{z}}(x_i\underline{\mathbf{x}}^\beta)$ for $\beta \in B$. These operators of multiplication commute.
- Notice that the coefficients of the matrix of $M_{x_i}^{\mathbf{z}}$ in the basis B are linear in the coefficients \mathbf{z} 's.

Border equations

▶ Conversely, if we are interested in characterizing the coefficients $\mathbf{z} := (z_{\alpha,\beta})_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}))_{\alpha \in B}$ are the border relations of some free A-algebra $A^{\mathbf{z}} = A[x_1, \dots, x_n]/I$ with basis B.

Border equations

▶ Conversely, if we are interested in characterizing the coefficients $\mathbf{z} := (z_{\alpha,\beta})_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}))_{\alpha \in B}$ are the border relations of some free A-algebra $A^{\mathbf{z}} = A[x_1, \dots, x_n]/I$ with basis B. Mourrain '99, and Kreuzer-Robbiano'08 proved

Theorem

Let B be a set of μ monomials connected to 1. The polynomials $h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})$ are the border relations of some free quotient algebra $\mathcal{A}^{\mathbf{z}}$ of $A[x_1,...,x_n]$ of basis B iff

$$M_{x_i}^{\mathbf{z}} \circ M_{x_j}^{\mathbf{z}} - M_{x_j}^{\mathbf{z}} \circ M_{x_i}^{\mathbf{z}} = 0 \quad \text{for} \quad 1 \leqslant i < j \leqslant n.$$
 (1)

$$\mathcal{H}_B := \{ \mathbf{z} = (\mathbf{z}_{\alpha,\beta}) \in \mathbb{K}^{\partial B \times B}; M_{\mathbf{x}_i}^{\mathbf{z}} \circ M_{\mathbf{x}_j}^{\mathbf{z}} - M_{\mathbf{x}_j}^{\mathbf{z}} \circ M_{\mathbf{x}_i}^{\mathbf{z}} = \mathbf{0} \mid_{1 \leqslant i < j \leqslant n} \}$$

▶ Start with algebraic equations defining a finite set of points $\mathbf{f}^0 \in \mathbb{K}[x_1, \dots, x_n]$, let $\mathbf{l}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{l}^0$.

- ▶ Start with algebraic equations defining a finite set of points
- $\mathbf{f}^0 \in \mathbb{K}[x_1,\ldots,x_n]$, let $\mathbf{l}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{l}^0$.
- ▶ Let B be a set of monomials that is also a \mathbb{K} -basis for \mathcal{A}^0 .

- Start with algebraic equations defining a finite set of points
- $\mathbf{f}^0 \in \mathbb{K}[x_1,\ldots,x_n]$, let $\mathbf{l}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{l}^0$.
 - ▶ Let B be a set of monomials that is also a \mathbb{K} -basis for \mathcal{A}^0 .
- lacktriangle Let us perturb the system ${f f}={f f}^0+arepsilon\,{f f}^1+\cdots$, and let
- $\mathcal{A}:=R^{\varepsilon}/I$ Where $R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathbf{x}]$ and, $(\mathbf{f})=I$ with I^0 describing the initial finite zero-set.

- Start with algebraic equations defining a finite set of points
- $\mathbf{f}^0 \in \mathbb{K}[x_1,\ldots,x_n]$, let $\mathbf{I}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{I}^0$.
 - ▶ Let B be a set of monomials that is also a \mathbb{K} -basis for \mathcal{A}^0 .
- lackbox Let us perturb the system $\mathbf{f}=\mathbf{f}^0+arepsilon\,\mathbf{f}^1+\cdots$, and let

 $\mathcal{A} := R^{\varepsilon}/I$ Where $R^{\varepsilon} = \mathbb{K}[[\varepsilon]][\mathbf{x}]$ and, $(\mathbf{f}) = I$ with I^0 describing the initial finite zero-set. Obstructions for flatness of

$$\mathbb{K}[[\varepsilon]] \to \mathcal{A}$$

Perturbing equations

- ▶ Start with algebraic equations defining a finite set of points $\mathbf{f}^0 \in \mathbb{K}[x_1, \dots, x_n]$, let $\mathbf{l}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{l}^0$.
 - ▶ Let B be a set of monomials that is also a \mathbb{K} -basis for \mathcal{A}^0 .
- lackbox Let us perturb the system $\mathbf{f}=\mathbf{f}^0+arepsilon\,\mathbf{f}^1+\cdots$, and let

 $\mathcal{A} := R^{\varepsilon}/I$ Where $R^{\varepsilon} = \mathbb{K}[[\varepsilon]][\mathbf{x}]$ and, $(\mathbf{f}) = I$ with I^0 describing the initial finite zero-set. Obstructions for flatness of

$$\mathbb{K}[[\varepsilon]] \to \mathcal{A}$$

"isolated, embedded points, points going to infinite"

Perturbing equations

- ▶ Start with algebraic equations defining a finite set of points $\mathbf{f}^0 \in \mathbb{K}[x_1, \dots, x_n]$, let $\mathbf{l}^0 = (\mathbf{f}^0)$ the 0-dim ideal and $\mathcal{A}^0 = \mathbb{K}[\mathbf{x}]/\mathbf{l}^0$.
 - ▶ Let B be a set of monomials that is also a \mathbb{K} -basis for \mathcal{A}^0 .
- lackbox Let us perturb the system ${f f}={f f}^0+arepsilon\,{f f}^1+\cdots$, and let

 $\mathcal{A} := R^{\varepsilon}/I$ Where $R^{\varepsilon} = \mathbb{K}[[\varepsilon]][\mathbf{x}]$ and, $(\mathbf{f}) = I$ with I^0 describing the initial finite zero-set. Obstructions for flatness of

$$\mathbb{K}[[\varepsilon]] \to \mathcal{A}$$

Flatness means the monomial basis B is still a basis of A as $\mathbb{K}[[\varepsilon]]$ module. (assumed A is finite $\mathbb{K}[[\varepsilon]]$ —module)

▶ More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.

- ▶ More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.
- ▶ Consider the multiplicative set $S = \{g(x) \in A[x] : g(x) \mod \mathfrak{m} = 1\}$

- ▶ More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.
- ▶ Consider the multiplicative set $S = \{g(x) \in A[x] : g(x) \mod \mathfrak{m} = 1\}$
- ▶ Let $A_a := S^{-1}A = S^{-1}A[x]/I$.

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.
- ▶ Consider the multiplicative set $S = \{g(x) \in A[x] : g(x) \mod \mathfrak{m} = 1\}$
- ▶ Let $A_a := S^{-1}A = S^{-1}A[x]/I$.

The effect of taking the extended ring is to keep only "the points to finite distance"

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.
- ▶ Consider the multiplicative set $S = \{g(x) \in A[x] : g(x) \mod \mathfrak{m} = 1\}$
- ▶ Let $A_a := S^{-1}A = S^{-1}A[x]/I$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1}\mathcal{A}$ is a finite A-module.

- ▶ More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^s$, $\mathbf{f} = \mathbf{f}^0 + \varepsilon \, \mathbf{f}^1 + \cdots$; $\varepsilon \in \mathfrak{m}$, denote by $I = (\mathbf{f})A[\mathbf{x}]$, $I^0 = (\mathbf{f}^0)\mathbb{K}[\mathbf{x}]$ and $A := A[\mathbf{x}]/I$ and the residual (initial) situation $A^0 = \mathbb{K}[\mathbf{x}]/I^0$.
- ▶ Consider the multiplicative set $S = \{g(x) \in A[x] : g(x) \mod \mathfrak{m} = 1\}$
- ▶ Let $A_a := S^{-1}A = S^{-1}A[x]/I$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1}A$ is a finite A-module.

QUESTION:

Conditions for $\mathcal{A} = A[\mathbf{x}]/I$ (resp. $\mathcal{A}_a = S^{-1}(A[\mathbf{x}]/I)$ to be a flat (hence free) A module? What can we say of a border basis of \mathcal{A} (or \mathcal{A}_a), assuming one knows a border basis mod. \mathfrak{m} ?

ANSWERS:

ANSWERS:

• If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.-Lombardi 2008)

ANSWERS

- If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.-Lombardi 2008)
- This lifting provides a basis of the quotient algebra in "the neighboring points" (= "the cluster"), and multiplication matrices that are "better" than the ones provided by Groebner methods.

ANSWERS:

- If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.-Lombardi 2008)
- This lifting provides a basis of the quotient algebra in "the neighboring points" (= "the cluster"), and multiplication matrices that are "better" than the ones provided by Groebner methods.
- We proof a *Bezout local theorem* for A a henselian equicharact. ring: which is elementary (and constructive for DVR.)

A Effective charact. of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008),

A Effective charact. of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008), Starting with border relations for the residual algebra \mathcal{A}^0 .

$$h_{\beta}^{0} := x^{\beta} - \sum z_{\alpha\beta}^{0} x^{\alpha} ; z_{\alpha\beta}^{0} \in \mathbb{K}$$

A Effective charact, of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008), Starting with border relations for the residual algebra \mathcal{A}^0 .

$$h_{\beta}^{0} := x^{\beta} - \sum z_{\alpha\beta}^{0} x^{\alpha} ; z_{\alpha\beta}^{0} \in \mathbb{K}$$

Using the henselianity, we lift them to get border relations in ${\mathcal A}$

A Effective charact. of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008), Starting with border relations for the residual algebra \mathcal{A}^0 .

$$h_{\beta}^{0} := x^{\beta} - \sum z_{\alpha\beta}^{0} x^{\alpha} ; z_{\alpha\beta}^{0} \in \mathbb{K}$$

Using the henselianity, we lift them to get border relations in $\mathcal A$. $h_{\beta}=x^{\beta}-\sum z_{\alpha\beta}\mathbf x^{\alpha}$, for $\beta\in\partial B$ and $\alpha\in B$, $z_{\alpha\beta}\in A$ s.t. $z_{\alpha\beta}\bmod\mathfrak m=z_{\alpha\beta}^0$

A Effective charact, of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008), Starting with border relations for the residual algebra \mathcal{A}^0 .

$$h_{\beta}^{0} := x^{\beta} - \sum z_{\alpha\beta}^{0} x^{\alpha} ; z_{\alpha\beta}^{0} \in \mathbb{K}$$

Using the henselianity, we lift them to get border relations in \mathcal{A} . $h_{\beta} = x^{\beta} - \sum z_{\alpha\beta} \mathbf{x}^{\alpha}$, for $\beta \in \partial B$ and $\alpha \in B$, $z_{\alpha\beta} \in A$ s.t. $z_{\alpha\beta} \mod \mathfrak{m} = z_{\alpha\beta}^0$ Set $\mathcal{H} := ((h_{\beta})_{\beta \in \partial B}) S^{-1} A[\mathbf{x}] \subset \mathsf{IS}^{-1} A[\mathbf{x}]$

A Effective charact. of Flatness

• In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K} -algebra (A.- Brachat- Mourrain 2008), Starting with border relations for the residual algebra \mathcal{A}^0 .

$$h_{\beta}^{0} := x^{\beta} - \sum z_{\alpha\beta}^{0} x^{\alpha} ; z_{\alpha\beta}^{0} \in \mathbb{K}$$

Using the henselianity, we lift them to get border relations in \mathcal{A} . $h_{\beta} = x^{\beta} - \sum z_{\alpha\beta} \mathbf{x}^{\alpha}$, for $\beta \in \partial B$ and $\alpha \in B$, $z_{\alpha\beta} \in A$ s.t. $z_{\alpha\beta} \mod \mathfrak{m} = z_{\alpha\beta}^0$ Set $\mathcal{H} := ((h_{\beta})_{\beta \in \partial B}) S^{-1} A[\mathbf{x}] \subset IS^{-1} A[\mathbf{x}]$

WE GET FLATNESS, iff the lifted border relations:

- ightharpoonup i) verify the equations of commutativity, in order to be border basis of $A[\mathbf{x}]/(h_{\alpha\beta})$, and
- ightharpoonup ii) generate the ideal of the beginning: I $S^{-1}_{a}A[x]=\mathcal{H}$

 $\mathsf{Hilb}^\mu_{\mathbb{P}^n} = \mathsf{The} \ \mathsf{Hilbert} \ \mathsf{functor} \ \mathsf{of} \ \mathbb{P}^n \ \mathsf{relative} \ \mathsf{to} \ \mu \in \mathbb{Z}^+$

```
\begin{aligned} \operatorname{Hilb}^{\mu}_{\mathbb{P}^n} &= \operatorname{The \ Hilbert \ functor \ of \ } \mathbb{P}^n \text{ relative to } \mu \in \mathbb{Z}^+ \\ \mathcal{C} &= \operatorname{Schemes \ of \ finite \ type \ over \ } \mathbb{K} \Longrightarrow \operatorname{Sets} \end{aligned}
```

 $X \mapsto \{\text{flat families} Z \subset X \times \mathbb{P}^n \text{ with fibers having Hilbert polynomial} \mu\}$

```
\begin{aligned} \operatorname{Hilb}^{\mu}_{\mathbb{P}^n} &= \operatorname{The\ Hilbert\ functor\ of\ } \mathbb{P}^n \text{ relative\ to\ } \mu \in \mathbb{Z}^+ \\ \mathcal{C} &= \operatorname{Schemes\ of\ finite\ type\ over\ } \mathbb{K} \Longrightarrow \operatorname{Sets} \end{aligned}
```

 $X \mapsto \{\text{flat families} Z \subset X \times \mathbb{P}^n \text{ with fibers having Hilbert polynomial} \mu\}$

If
$$X = \operatorname{Spec}(A)$$
, A is a \mathbb{K} -algebra of finite type, and the homogeneous ring $S^A = A[x_0, \dots, x_n]$ ($S^A =: S$ for short)

$$\mathsf{Hilb}^{\mu}_{\mathbb{P}^n}(X) = \{I \subset S^A \text{ homog. sat. ideal } :$$

$$S_d^A/I_d$$
 is A free mod. of rank $\mu \ \forall d >> 0$

$$\begin{aligned} \mathbf{Hilb}^{\mu}_{\mathbb{P}^n} &= \text{The Hilbert functor of } \mathbb{P}^n \text{ relative to } \mu \in \mathbb{Z}^+ \\ \mathcal{C} &= \text{Schemes of finite type over } \mathbb{K} \Longrightarrow \text{Sets} \\ X \mapsto \{\text{flat families} Z \subset X \times \mathbb{P}^n \text{ with fibers having Hilbert polynomial} \mu \} \\ &\text{If } X = \text{Spec}(A), \ A \text{ is a } \mathbb{K}\text{-algebra of finite type, and the homogeneous ring } S^A = A[x_0, \dots, x_n] \ (S^A =: S \text{ for short}) \\ &\text{Hilb}^{\mu}_{\mathbb{P}^n}(X) = \{I \subset S^A \text{ homog. sat. ideal : } \\ &S_d^A/I_d \text{ is } A \text{ free mod. of rank } \mu \ \forall d >> 0 \} \end{aligned}$$

Construct $\operatorname{Hilb}^{\mu}(\mathbb{P}^n)$ implies to provide this set with structure of scheme.

$$\begin{aligned} \operatorname{Hilb}^{\mu}_{\mathbb{P}^n} &= \operatorname{The \ Hilbert \ functor \ of \ } \mathbb{P}^n \text{ relative to } \mu \in \mathbb{Z}^+ \\ \mathcal{C} &= \operatorname{Schemes \ of \ finite \ type \ over \ } \mathbb{K} \Longrightarrow \operatorname{Sets} \end{aligned}$$

 $X \mapsto \{\text{flat families} Z \subset X \times \mathbb{P}^n \text{ with fibers having Hilbert polynomial} \mu\}$

If
$$X = \operatorname{Spec}(A)$$
, A is a \mathbb{K} -algebra of finite type, and the homogeneous ring $S^A = A[x_0, \dots, x_n]$ ($S^A =: S$ for short)

Hilb $_{\mathbb{P}^n}^{\mu}(X) = \{I \subset S^A \text{ homog. sat. ideal }: S_d^A/I_d \text{ is } A \text{ free mod. of rank } \mu \ \forall d >> 0\}$

▶ One can cover the functor $\mathbf{Hilb}^{\mu}_{\mathbb{P}^n}$ with an open covering of affine representable subfunctors namely

$$\begin{aligned} \operatorname{Hilb}_{\mathbb{P}^n}^{\mu} &= \text{The Hilbert functor of } \mathbb{P}^n \text{ relative to } \mu \in \mathbb{Z}^+ \\ \mathcal{C} &= \text{Schemes of finite type over } \mathbb{K} \Longrightarrow \operatorname{\mathsf{Sets}} \end{aligned}$$

 $X \mapsto \{\text{flat families} Z \subset X \times \mathbb{P}^n \text{ with fibers having Hilbert polynomial} \mu\}$

If
$$X = \operatorname{Spec}(A)$$
, A is a \mathbb{K} -algebra of finite type, and the homogeneous ring $S^A = A[x_0, \dots, x_n]$ ($S^A =: S$ for short)

Hilb $_{\mathbb{P}^n}^{\mu}(X) = \{I \subset S^A \text{ homog. sat. ideal }: S_d^A/I_d \text{ is } A \text{ free mod. of rank } \mu \ \forall d >> 0\}$

One can cover the functor $\mathbf{Hilb}_{\mathbb{P}^n}^{\mu}$ with an open covering of affine representable subfunctors namely $\mathbf{Hilb}_{\mathbb{P}^n}^B$ (B a set of μ monomials of degree, and $u \in S_1$, represented by $\mathbf{Spec}(\mathbb{K}[(z_{\alpha,\beta})_{\alpha\in\delta B,\beta\in B}]/\mathcal{R})$, where R is the ideal of commutating relations. cf. Brachat Ph.D. INRIA 2011)

• Let $X = \operatorname{Spec}(A)$, and $Gr^{\mu}_{S^*_d}(X) = \{\Delta^* : \Delta = S_d/I_d : A \text{ free module of rank } \mu\}$, where Δ^* is the dual of Δ , and

```
• Let X = \operatorname{Spec}(A), and Gr^{\mu}_{S^*_d}(X) = \{\Delta^* : \Delta = S_d/I_d : A \text{ free module of rank } \mu\}, where \Delta^* is the dual of \Delta, and \operatorname{Gr}^{\mu}_{S^*_d}(X) \hookrightarrow \mathbb{P}(\wedge^{\mu}(S^A_d)^*).
```

- Let $X = \operatorname{Spec}(A)$, and $Gr^{\mu}_{S^*_d}(X) = \{\Delta^* : \Delta = S_d/I_d : A \text{ free module of rank } \mu\}$, where Δ^* is the dual of Δ , and $\operatorname{Gr}^{\mu}_{S^*_d}(X) \hookrightarrow \mathbb{P}(\wedge^{\mu}(S^A_d)^*)$
- Consider the Plucker coordinates in in $\mathbb{P}(\wedge^{\mu}(S_d^A)^*)$:

- Let $X = \operatorname{Spec}(A)$, and $Gr^{\mu}_{S^*_d}(X) = \{\Delta^* : \Delta = S_d/I_d : A \text{ free module of rank } \mu\}$, where Δ^* is the dual of Δ , and $\operatorname{Gr}^{\mu}_{S^*_d}(X) \hookrightarrow \mathbb{P}(\wedge^{\mu}(S^A_d)^*)$
- Consider the Plucker coordinates in in $\mathbb{P}(\wedge^{\mu}(S_d^A)^*)$:
- Let $\Delta = S_d/I_d \in \mathbf{Gr}^{\mu}_{S_d^*}(X)$, and $(\delta_1, \dots, \delta_{\mu})$ in be any basis of the dual space Δ^* (also a free *A*-module of rank μ).

- Let $X = \operatorname{Spec}(A)$, and $Gr^{\mu}_{S^*_d}(X) = \{\Delta^* : \Delta = S_d/I_d : A \text{ free module of rank } \mu\}$, where Δ^* is the dual of Δ , and $\operatorname{Gr}^{\mu}_{S^*_d}(X) \hookrightarrow \mathbb{P}(\wedge^{\mu}(S^A_d)^*)$
- Consider the Plucker coordinates in in $\mathbb{P}(\wedge^{\mu}(S_d^A)^*)$:
- Let $\Delta = S_d/I_d \in \mathbf{Gr}^{\mu}_{S_d^*}(X)$, and $(\delta_1, \dots, \delta_{\mu})$ in be any basis of the dual space Δ^* (also a free A-module of rank μ).
- Plücker coordinates of Δ as an element of $\mathbb{P}(\wedge^{\mu}S_{d}^{*})$ are given by:

$$\Delta_{eta_1,...,eta_{\mu}} = \left|egin{array}{ccc} \delta_1(\mathbf{x}^{eta_1}) & \cdots & \delta_1(\mathbf{x}^{eta_{\mu}}) \ dots & dots \ \delta_{\mu}(\mathbf{x}^{eta_1}) & \cdots & \delta_{\mu}(\mathbf{x}^{eta_{\mu}}) \end{array}
ight|$$

for
$$\beta_i \in \mathbb{N}^{n+1}$$
, $|\beta_i| = d$ and $\beta_1 < \dots < \beta_{\mu}$.

▶ Algebraic structure of $\operatorname{Hilb}^{\mu}(\mathbb{P}^n)$ as projective variety is given by means of the bijection

$$\mathrm{Hilb}^{\mu}(\mathbb{P}^n) \longleftrightarrow$$

$$W^A = \{ (S_d^A/I_d, S_{d+1}^A/I_{d+1}) \in \mathbf{Gr}^{\mu}_{S_d^{A*}}(X) \times \mathbf{Gr}^{\mu}_{S_{d+1}^{A*}}(X) \mid S_1^A \cdot I_d = I_{d+1} \}.$$

▶ Algebraic structure of $\operatorname{Hilb}^{\mu}(\mathbb{P}^n)$ as projective variety is given by means of the bijection

$$\mathrm{Hilb}^{\mu}(\mathbb{P}^n) \longleftrightarrow$$

$$W^{A} = \{ (S_{d}^{A}/I_{d}, S_{d+1}^{A}/I_{d+1}) \in \mathbf{Gr}_{S_{d}^{A*}}^{\mu}(X) \times \mathbf{Gr}_{S_{d+1}^{A*}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d} = I_{d+1} \}.$$

$$I_{d} \mapsto \overline{I_{d}} = (I_{d}) + (I_{d} : S_{1}) + (I_{d} : S_{2}) + \dots + (I_{d} : S_{d-1})$$

Algebraic structure of $\operatorname{Hilb}^{\mu}(\mathbb{P}^n)$ as projective variety is given by means of the bijection $\operatorname{Hilb}^{\mu}(\mathbb{P}^n) \longleftrightarrow$

$$N^A = S(S^A/I, S^A, I, ...) \in \mathbf{Gr}^{\mu} (X) \vee \mathbf{Gr}^{\mu} (X) \mid S^A.I$$

$$W^{A} = \{ (S_{d}^{A}/I_{d}, S_{d+1}^{A}/I_{d+1}) \in \mathbf{Gr}_{S_{d}^{A*}}^{\mu}(X) \times \mathbf{Gr}_{S_{d+1}^{A*}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d} = I_{d+1} \}.$$

$$I_{d} \mapsto \overline{I_{d}} = (I_{d}) + (I_{d} : S_{1}) + (I_{d} : S_{2}) + \dots + (I_{d} : S_{d-1})$$

➤ This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.

▶ Algebraic structure of $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$ as projective variety is given by means of the bijection

$$\mathrm{Hilb}^{\mu}(\mathbb{P}^n) \longleftrightarrow$$

$$W^{A} = \{ (S_{d}^{A}/I_{d}, S_{d+1}^{A}/I_{d+1}) \in \mathbf{Gr}_{S_{d}^{A*}}^{\mu}(X) \times \mathbf{Gr}_{S_{d+1}^{A*}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d} = I_{d+1} \}.$$

$$I_{d} \mapsto \overline{I_{d}} = (I_{d}) + (I_{d} : S_{1}) + (I_{d} : S_{2}) + \dots + (I_{d} : S_{d-1})$$

- ➤ This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.
- ▶ In A. -Brachat- Mourrain (2008), we find an inmersion of $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$, inside the $\mathbf{Gr}^{\mu}_{S^*_d}(X)$ with global equations of deree two. In the following we show how to get $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$ inside a product of Grasmanians with equations of degree two.

Global equations for $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$

▶ |) A Determinantal identity.

Global equations for $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$

▶ I) A Determinantal identity. Let $\Delta := S_d^A/I_d \in \operatorname{Gr}_{S_d^*}^{\mu}(X)$

 $B = (b_1, \ldots, b_\mu)$ be a family of homogeneous polynomials of degree d, then, $\Delta_B a - \sum_{i=1}^{\mu} \Delta_{B[b_i|a]} b_i = 0$ in Δ , for $a \in S_d^A$

where $B^{[b_i|a]} = (b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{\mu}).$

Global equations for $\mathrm{Hilb}^{\mu}(\mathbb{P}^n)$

▶ I) A Determinantal identity. Let $\Delta := S_d^A/I_d \in \operatorname{Gr}_{S_d^*}^{\mu}(X)$

 $B=(b_1,\ldots,b_\mu)$ be a family of homogeneous polynomials of degree d, then, $\Delta_B \ a - \sum_{i=1}^\mu \Delta_{B[b_i|a]} \ b_i = 0$ in Δ , for $a \in \mathcal{S}_d^A$ where $B^{[b_i|a]}=(b_1,\ldots,b_{i-1},a,b_{i+1},\ldots,b_\mu)$. Let it be

$$M:=\left[egin{array}{cccc} \delta_1(a) & \delta_1(b_1) & \cdots & \delta_1(b_\mu) \ dots & & dots \ \delta_{\mu}(a) & \delta_{\mu}(b_1) & \cdots & \delta_{\mu}(b_\mu) \ 1 & 1 & \cdots & 1 \end{array}
ight]$$

and develop its determinant along the last row of M. We get the last equality of rows in the identity below. The others come from developping a determinant with a repetead row.

$$M \left[egin{array}{c} \Delta_B \ \Delta_{B^{[b_1|a]}} \ dots \ \Delta_{B^{[b_{\mu}|a]}} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ dots \ \det(M) \end{array}
ight].$$

We conclude that $\Delta_B \ a - \sum_{i=1}^{\mu} \Delta_{B^{[b_i|a]}} \ b_i = 0$ in Δ since all δ_i vanishes at this element, and they are a basis of Δ^* .

HENRIFEST

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{s_d^*}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{s_d^*}^{\mu}(X) \times \operatorname{Gr}_{s_{d+1}^*}^{\mu}(X)$ defined by the equations

$$\Delta_{\mathcal{B}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\pmb{a}}}'-\sum_{\pmb{b}\in\mathcal{B}}\Delta_{\mathcal{B}^{[\pmb{b}|\pmb{a}]}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\pmb{b}}}'=0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a \in S_d^A$ and for every k (where $B^{'}, x_k a$ is the family $(b_1^{'}, \ldots, b_{\mu-1}^{'}, x_k a)$.

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{S_{\boldsymbol{d}}^{\mu}}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{S_{\boldsymbol{d}}^{\mu}}^{\mu}(X) \times \operatorname{Gr}_{S_{\boldsymbol{d}+1}^{\mu}}^{\mu}(X)$ defined by the equations

$$\Delta_{\mathcal{B}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\pmb{a}}}'-\sum_{\pmb{b}\in\mathcal{B}}\Delta_{\mathcal{B}^{[\pmb{b}|\pmb{a}]}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\pmb{b}}}'=0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a \in S_d^A$ and for every k (where B', $x_k a$ is the family $(b_1^{'}, \ldots, b_{\mu-1}^{'}, x_k a)$.

Proof. Let $(\Delta, \Delta') \in \mathsf{Gr}^\mu_{S^*_d}(X) \times \mathsf{Gr}^\mu_{S^*_{d+1}}(X)$ satisfying the equations above.

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{S_d^*}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{S_d^*}^{\mu}(X) \times \operatorname{Gr}_{S_{d+1}^*}^{\mu}(X)$ defined by the equations

$$\Delta_{\mathcal{B}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\;\pmb{a}}}'-\sum_{\pmb{b}\in\mathcal{B}}\Delta_{\mathcal{B}^{[\pmb{b}|\pmb{a}]}}\,\Delta_{\mathcal{B}',\mathbf{x}_{\pmb{k}}^{\;\pmb{b}}}'=0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a\in S_d^A$ and for every k (where $B^{'},x_ka$ is the family $(b_1^{'},\ldots,b_{\mu-1}^{'},x_ka)$.

Proof. Let $(\Delta, \Delta') \in \operatorname{Gr}^{\mu}_{s_d}(X) \times \operatorname{Gr}^{\mu}_{s_{d+1}}(X)$ satisfying the equations above. (We identify $\Delta \subset S_d^*$ with $\ker(\Delta) \subset S_d$.)

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{S_d^*}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{S_d^*}^{\mu}(X) \times \operatorname{Gr}_{S_{d+1}^*}^{\mu}(X)$ defined by the equations

$$\Delta_{\textit{B}}\,\Delta_{\textit{B}',\times_{\textit{k}}^{\textit{a}}}^{'} - \sum_{\textit{b}\in\textit{B}}\Delta_{\textit{B}^{[\textit{b}|\textit{a}]}}\,\Delta_{\textit{B}',\times_{\textit{k}}^{\textit{b}}}^{'} = 0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a\in S_d^A$ and for every k (where $B^{'},x_ka$ is the family $(b_1^{'},\ldots,b_{\mu-1}^{'},x_ka)$.

Proof. Let $(\Delta, \Delta') \in \operatorname{Gr}^{\mu}_{S^*_{d}}(X) \times \operatorname{Gr}^{\mu}_{S^*_{d+1}}(X)$ satisfying the equations above. (We identify $\Delta \subset S^*_{d}$ with $\ker(\Delta) \subset S_{d}$.)

▶ Let us to prove that $S_1 \cdot \ker \Delta \subset \ker \Delta'$. Let B be a basis of Δ (so that $\Delta_B \not\in m$ is invertible), and let f be an element of $\ker \Delta$.

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{s_d^*}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{s_d^*}^{\mu}(X) \times \operatorname{Gr}_{s_{d+1}^*}^{\mu}(X)$ defined by the equations

$$\Delta_{\textit{B}}\,\Delta_{\textit{B}',x_{\textit{k}}\,^{\textit{a}}}^{'} - \sum_{\textit{b}\in\textit{B}}\Delta_{\textit{B}[\textit{b}|\,\textit{a}]}\,\Delta_{\textit{B}',x_{\textit{k}}\,^{\textit{b}}}^{'} = 0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a\in S_d^A$ and for every k (where $B^{'},x_ka$ is the family $(b_1^{'},\ldots,b_{\mu-1}^{'},x_ka)$.

Proof. Let $(\Delta, \Delta') \in \operatorname{Gr}^{\mu}_{\mathbf{S}^*_{\mathbf{d}}}(X) \times \operatorname{Gr}^{\mu}_{\mathbf{S}^*_{\mathbf{d}+1}}(X)$ satisfying the equations above. (We identify $\Delta \subset S^*_{\mathbf{d}}$ with $\ker(\Delta) \subset S_{\mathbf{d}}$.)

▶ Let us to prove that $S_1 \cdot \ker \Delta \subset \ker \Delta'$. Let B be a basis of Δ (so that $\Delta_B \not\in m$ is invertible), and let f be an element of $\ker \Delta$.By linearity, equations above imply that $\Delta'_{B',x_kf} = 0$ for all $k = 1, \ldots, n$ and all subset B' of $\mu - 1$ monomials of degree d+1 (because $\Delta_{B[b|f]} = 0$).

• Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^n}^{\mu}(X)$ is the projection on $\operatorname{Gr}_{s_d^*}^{\mu}(X)$ of the variety of $\operatorname{Gr}_{s_d^*}^{\mu}(X) \times \operatorname{Gr}_{s_{d+1}^*}^{\mu}(X)$ defined by the equations

$$\Delta_{\textit{B}}\,\Delta_{\textit{B}',x_{\pmb{k}}^{\;\pmb{a}}}' - \sum_{\textit{b}\in\textit{B}}\Delta_{\textit{B}^{[\textit{b}|\textit{a}]}}\,\Delta_{\textit{B}',x_{\pmb{k}}^{\;\pmb{b}}}' = 0,$$

for all families B (resp. B') of μ (resp. $\mu-1$) monomials of degree d (resp. d+1), all monomial $a \in S_d^A$ and for every k (where $B^{'}, x_k a$ is the family $(b_1^{'}, \ldots, b_{\mu-1}^{'}, x_k a)$.

Proof. Let $(\Delta, \Delta') \in \operatorname{Gr}^{\mu}_{S^*_{d}}(X) \times \operatorname{Gr}^{\mu}_{S^*_{d+1}}(X)$ satisfying the equations above. (We identify $\Delta \subset S^*_d$ with $\ker(\Delta) \subset S_d$.)

Let us to prove that $S_1 \cdot \ker \Delta \subset \ker \Delta'$. Let B be a basis of Δ (so that $\Delta_B \not\in m$ is invertible), and let f be an element of $\ker \Delta$.By linearity, equations above imply that $\Delta'_{B',x_kf} = 0$ for all $k = 1, \ldots, n$ and all subset B' of $\mu - 1$ monomials of degree d+1 (because $\Delta_{B[b|f]} = 0$). Thus, by determinantal Lemma , $x_k \cdot f$ belongs to $\ker \Delta'$ for all $k = 1, \ldots, n$ and $S_1 \cdot \ker \Delta \subset \ker \Delta'$.

Henri: HAPPY BIG BIRTHDAY!

Henri: HAPPY BIG BIRTHDAY!

THANK YOU FOR YOUR ATTENTION!

