Border basis: a useful tool for constructions in Algebra

M.E. Alonso
(from joints paper with H. Lombardi and, Brachat, Mourrain)

UCM, Madrid, Spain

HenriFest, Besancon, 15-16 ${ }^{\text {th }}$ October 2011

General Techniques in Computer Algebra

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation:

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations.

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?
- As a tool for Constructions in Algebraic Geometry: one likes to have constructions that specializes from A to the residual $k=A / \mathfrak{m}$.

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?
- As a tool for Constructions in Algebraic Geometry: one likes to have constructions that specializes from A to the residual $k=A / \mathfrak{m}$. Sometimes this allows dynamical arguments.

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?
- As a tool for Constructions in Algebraic Geometry: one likes to have constructions that specializes from A to the residual $k=A / \mathfrak{m}$. Sometimes this allows dynamical arguments.
- These methods are stable under perturbation:

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?
- As a tool for Constructions in Algebraic Geometry: one likes to have constructions that specializes from A to the residual $k=A / \mathfrak{m}$. Sometimes this allows dynamical arguments.
- These methods are stable under perturbation:
- Resultants, Border basis: Cartan 1945; Kuranishi 1957;

General Techniques in Computer Algebra

- Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)
- These methods are not stable under perturbation: Drawbacks:
- In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?
- As a tool for Constructions in Algebraic Geometry: one likes to have constructions that specializes from A to the residual $k=A / \mathfrak{m}$. Sometimes this allows dynamical arguments.
- These methods are stable under perturbation:
- Resultants, Border basis: Cartan 1945; Kuranishi 1957; Mourrain, Trébuchet: 1999-2008; and Kehrein, Kreuzer, Robbiano: 2005-2008.

Outline

(1) Border basis

Outline

(1) Border basis

2 Flatness and Border bases

Outline

(1) Border basis
(2) Flatness and Border bases
(3) Elementary construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Outline

(1) Border basis

2 Flatness and Border bases
(3) Elementary construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Representation of 0-dim. A-algebras with monomial basis B

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a local ring with maximal ideal \mathfrak{m} and residue field $\mathbb{K}:=A / \mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ that is a flat A-module; hence a free A-module.

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a local ring with maximal ideal \mathfrak{m} and residue field $\mathbb{K}:=A / \mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ that is a flat A-module; hence a free A-module.
- Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B.

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a local ring with maximal ideal \mathfrak{m} and residue field $\mathbb{K}:=A / \mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ that is a flat A-module; hence a free A-module.
- Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial \underline{x}^{α} is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha, \beta} \in A(\beta \in B)$ s.t.

$$
h_{\alpha}^{z}(\underline{\mathbf{x}}):=\underline{\mathbf{x}}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta} \equiv 0
$$

Representation of 0-dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, or connected to 1 (for $x^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a local ring with maximal ideal \mathfrak{m} and residue field $\mathbb{K}:=A / \mathfrak{m}$. Suppose that \mathcal{A} is a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ that is a flat A-module; hence a free A-module.
- Assume that \mathcal{A} has a monomial basis B. For any $\alpha \in \partial B$, the monomial \underline{x}^{α} is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha, \beta} \in A(\beta \in B)$ s.t.

$$
h_{\alpha}^{z}(\underline{\mathbf{x}}):=\underline{\mathbf{x}}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta} \equiv 0
$$

The $h_{\alpha}^{z}(\underline{\mathbf{x}})$ will be called, the border relations of \mathcal{A} w.r.t. B.

- These border relations, are re-writing rules: N^{2}

- These border relations, are re-writing rules: N^{z}

For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- These border relations, are re-writing rules: N^{2}

For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathrm{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- The tables of multiplication $M_{x_{i}}^{\mathbf{z}}:\langle B\rangle \rightarrow\langle B\rangle$ are constructed using $M_{x_{i}}^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=N^{\mathbf{z}}\left(x_{i} \underline{\mathbf{x}}^{\beta}\right)$ for $\beta \in B$.

- These border relations, are re-writing rules: N^{2}

For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- The tables of multiplication $M_{x_{i}}^{2}:\langle B\rangle \rightarrow\langle B\rangle$ are constructed using $M_{x_{i}}^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=N^{\mathbf{z}}\left(x_{i} \underline{\mathbf{x}}^{\beta}\right)$ for $\beta \in B$. These operators of multiplication commute.

- These border relations, are re-writing rules: N^{2}

For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- The tables of multiplication $M_{x_{i}}^{2}:\langle B\rangle \rightarrow\langle B\rangle$ are constructed using $M_{x_{i}}^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=N^{\mathbf{z}}\left(x_{i} \underline{\mathbf{x}}^{\beta}\right)$ for $\beta \in B$. These operators of multiplication commute.
- Notice that the coefficients of the matrix of $M_{x_{i}}^{2}$ in the basis B are linear in the coefficients z 's.

Border equations

- Conversely, if we are interested in characterizing the coefficients $\mathbf{z}:=\left(z_{\alpha, \beta}\right)_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $\left(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})\right)_{\alpha \in B}$ are the border relations of some free A-algebra $\mathcal{A}^{\mathbf{z}}=A\left[x_{1}, \ldots, x_{n}\right] / I$ with basis B.

Border equations

- Conversely, if we are interested in characterizing the coefficients $\mathbf{z}:=\left(z_{\alpha, \beta}\right)_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $\left(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})\right)_{\alpha \in B}$ are the border relations of some free A-algebra $\mathcal{A}^{\mathbf{z}}=A\left[x_{1}, \ldots, x_{n}\right] / I$ with basis B.Mourrain '99, and Kreuzer-Robbiano'08 proved

Theorem

Let B be a set of μ monomials connected to 1 . The polynomials $h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})$ are the border relations of some free quotient algebra $\mathcal{A}^{\mathbf{z}}$ of $A\left[x_{1}, \ldots, x_{n}\right]$ of basis B iff

$$
\begin{equation*}
M_{x_{i}}^{2} \circ M_{x_{j}}^{z}-M_{x_{j}}^{z} \circ M_{x_{i}}^{z}=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant n . \tag{1}
\end{equation*}
$$

$$
\mathcal{H}_{B}:=\left\{\mathbf{z}=\left(z_{\alpha, \beta}\right) \in \mathbb{K}^{\partial B \times B} ; M_{x_{i}}^{\mathbf{z}} \circ M_{x_{j}}^{\mathbf{z}}-M_{x_{j}}^{\mathbf{z}} \circ M_{x_{i}}^{\mathbf{z}}=0_{1 \leqslant i<j \leqslant n}\right\}
$$

Border basis
Flatness and Border bases
Elementary construction of $\operatorname{Hilb}{ }^{\mu}\left(\mathbb{P}^{n}\right)$

Perturbing equations

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $\mathcal{A}:=R^{\varepsilon} / I$ Where $R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathbf{x}]$ and, $(\mathbf{f})=I$ with I^{0} describing the initial finite zero-set.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $\mathcal{A}:=R^{\varepsilon} / I$ Where $R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathrm{x}]$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $\mathcal{A}:=R^{\varepsilon} / I$ Where $R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathrm{x}]$ and, $(\mathbf{f})=I$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

"isolated, embedded points, points going to infinite"

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $\mathcal{A}:=R^{\varepsilon} / I$ Where $R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathrm{x}]$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

Flatness means the monomial basis B is still a basis of \mathcal{A} as $\mathbb{K}[[\varepsilon] 1$ module (assumed \mathcal{A} is finite $\mathbb{K}[[\varepsilon]]$ - module)

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set $S=\{g(x) \in A[x]: g(x)$ $\bmod \mathfrak{m}=1\}$

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Consider the multiplicative set $S=\{g(x) \in A[x]: g(x)$ $\bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathrm{x}] / \mathrm{I}$.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Consider the multiplicative set $S=\{g(x) \in A[x]: g(x)$ $\bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathrm{x}] / \mathrm{I}$.

The effect of taking the extended ring is to keep only "the points to finite distance"

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Consider the multiplicative set $S=\{g(x) \in A[x]: g(x)$ $\bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[x] / I$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1} \mathcal{A}$ is a finite A-module.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Consider the multiplicative set $S=\{g(x) \in A[x]: g(x)$ $\bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathrm{x}] / \mathrm{I}$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1} \mathcal{A}$ is a finite
A-module.
QUESTION:
Conditions for $\mathcal{A}=A[\mathbf{x}] / I$ (resp. $\mathcal{A}_{a}=S^{-1}(A[\mathrm{x}] / I)$ to be a flat (hence free) A module? What can we say of a border basis of \mathcal{A} (or \mathcal{A}_{a}), assuming one knows a border basis mod. \mathfrak{m} ?

Local Bezout theorem for Henselian rings

ANSWERS:

Local Bezout theorem for Henselian rings

ANSWERS:

- If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.Lombardi 2008)

Local Bezout theorem for Henselian rings

ANSWERS:

- If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.Lombardi 2008)
- This lifting provides a basis of the quotient algebra in "the neighboring points" (= "the cluster"), and multiplication matrices that are "better" than the ones provided by Groebner methods.

Local Bezout theorem for Henselian rings

ANSWERS:

- If we deform a complete intersection the answer is Yes, we can effectively lift a border basis of the residual algebra. (A.Lombardi 2008)
- This lifting provides a basis of the quotient algebra in "the neighboring points" (= "the cluster"), and multiplication matrices that are "better" than the ones provided by Groebner methods.
- We proof a Bezout local theorem for A a henselian equicharact. ring : which is elementary (and constructive for DVR.)

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),Starting with border relations for the residual algebra \mathcal{A}^{0}.

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),Starting with border relations for the residual algebra \mathcal{A}^{0}.

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

Using the henselianity, we lift them to get border relations in \mathcal{A}

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),Starting with border relations for the residual algebra \mathcal{A}^{0}.

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

Using the henselianity, we lift them to get border relations in \mathcal{A} . $h_{\beta}=x^{\beta}-\sum z_{\alpha \beta} \mathbf{x}^{\alpha}$, for $\beta \in \partial B$ and $\alpha \in B, z_{\alpha \beta} \in A$ s.t.
$z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),Starting with border relations for the residual algebra \mathcal{A}^{0}.

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

Using the henselianity, we lift them to get border relations in \mathcal{A} . $h_{\beta}=x^{\beta}-\sum z_{\alpha \beta} \mathbf{x}^{\alpha}$, for $\beta \in \partial B$ and $\alpha \in B, z_{\alpha \beta} \in A$ s.t.
$z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$
Set $\mathcal{H}:=\left(\left(h_{\beta}\right)_{\beta \in \partial B}\right) S^{-1} A[\mathbf{x}] \subset I S^{-1} \mathrm{~A}[\mathbf{x}]$

A Effective charact. of Flatness

- In the general case $n \neq s$: we get an effective criterion of flatness in terms of the given equations and a border basis of the residual \mathbb{K}-algebra (A.- Brachat- Mourrain 2008),Starting with border relations for the residual algebra \mathcal{A}^{0}.

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

Using the henselianity, we lift them to get border relations in \mathcal{A} . $h_{\beta}=x^{\beta}-\sum z_{\alpha \beta} \mathbf{x}^{\alpha}$, for $\beta \in \partial B$ and $\alpha \in B, z_{\alpha \beta} \in A$ s.t.
$z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$
Set $\mathcal{H}:=\left(\left(h_{\beta}\right)_{\beta \in \partial B}\right) S^{-1} A[\mathbf{x}] \subset I S^{-1} \mathrm{~A}[\mathbf{x}]$
WE GET FLATNESS, iff the lifted border relations :

- i) verify the equations of commutativity, in order to be border basis of $A[\mathbf{x}] /\left(h_{\alpha \beta}\right)$, and
- ii) generate the ideal of the beginning: $\mathrm{S}^{-1} \mathrm{~A}[\mathrm{x}]=\mathcal{H}$

Elementary construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{\boldsymbol{n}}\right)$

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$
If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A free mod. of rank $\left.\mu \forall d \gg 0\right\}$

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$
If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short) $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :

$$
\left.S_{d}^{A} / I_{d} \text { is } A \text { free mod. of rank } \mu \forall d \gg 0\right\}
$$

Construct $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ implies to provide this set with structure of scheme.

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$
If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$

$$
\begin{aligned}
& \operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right. \text { homog. sat. ideal : } \\
& \left.S_{d}^{A} / I_{d} \text { is } A \text { free mod. of rank } \mu \forall d \gg 0\right\}
\end{aligned}
$$

- One can cover the functor $\mathbf{H i l b}_{\mathbb{P} n}^{\mu}$ with an open covering of affine representable subfunctors namely

Construction of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$
If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short)
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A free mod. of rank $\left.\mu \forall d \gg 0\right\}$

- One can cover the functor $\mathrm{Hilb}_{\mathbb{P}^{n}}^{\mu}$ with an open covering of affine representable subfunctors namely $\operatorname{Hilb}_{u}^{B}$ (B a set of μ monomials of degree, and $u \in S_{1}$, represented by
$\operatorname{Spec}\left(\mathbb{K}\left[\left(z_{\alpha, \beta}\right)_{\alpha \in \delta B, \beta \in B}\right] / \mathcal{R}\right)$, where R is the ideal of commutating relations. cf. Brachat Ph.D. INRIA 2011)

Plucker coordinates

Plucker coordinates

- Let $X=\operatorname{Spec}(A)$, and $G r_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta^{*}: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$, where Δ^{*} is the dual of Δ, and

Plucker coordinates

- Let $X=\operatorname{Spec}(A)$, and $G r_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta^{*}: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$, where Δ^{*} is the dual of Δ, and

$$
\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

Plucker coordinates

- Let $X=\operatorname{Spec}(A)$, and
$G r_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta^{*}: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$, where Δ^{*} is the dual of Δ, and

$$
\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:

Plucker coordinates

- Let $X=\operatorname{Spec}(A)$, and $G r_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta^{*}: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$, where Δ^{*} is the dual of Δ, and

$$
\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:
- Let $\Delta=S_{d} / I_{d} \in \operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$, and $\left(\delta_{1}, \ldots, \delta_{\mu}\right)$ in be any basis of the dual space Δ^{*} (also a free A-module of rank μ).

Plucker coordinates

- Let $X=\operatorname{Spec}(A)$, and
$G r_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta^{*}: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$, where Δ^{*} is the dual of Δ, and

$$
\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:
- Let $\Delta=S_{d} / I_{d} \in \operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$, and $\left(\delta_{1}, \ldots, \delta_{\mu}\right)$ in be any basis of the dual space Δ^{*} (also a free A-module of rank μ).
- Plücker coordinates of Δ as an element of $\mathbb{P}\left(\wedge^{\mu} S_{d}^{*}\right)$ are given by:

$$
\Delta_{\beta_{1}, \ldots, \beta_{\mu}}=\left|\begin{array}{ccc}
\delta_{1}\left(\mathbf{x}^{\beta_{1}}\right) & \cdots & \delta_{1}\left(\mathbf{x}^{\beta_{\mu}}\right) \\
\vdots & & \vdots \\
\delta_{\mu}\left(\mathbf{x}^{\beta_{1}}\right) & \cdots & \delta_{\mu}\left(\mathbf{x}^{\beta_{\mu}}\right)
\end{array}\right|
$$

for $\beta_{i} \in \mathbb{N}^{n+1},\left|\beta_{i}\right|=d$ and $\beta_{1}<\cdots<\beta_{\mu}$.

The Hilb ${ }^{\mu}\left(\mathbb{P}^{n}\right)$ inside the $\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right) \longleftrightarrow$
$W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathbf{G r}_{S_{d}^{A *}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}$.

The $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ inside the $\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right) \longleftrightarrow$

$$
\begin{gathered}
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \operatorname{Gr}_{S_{d}^{A *}}^{\mu}(X) \times \operatorname{Gr}_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} . \\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

The $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ inside the $\operatorname{Gr}_{S_{f}^{\prime}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right) \longleftrightarrow$

$$
\begin{gathered}
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathbf{G r}_{S_{d}^{A *}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} . \\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

- This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.

The Hilb ${ }^{\mu}\left(\mathbb{P}^{n}\right)$ inside the $\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ as projective variety is given by means of the bijection

$$
\begin{gathered}
\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right) \longleftrightarrow \\
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \operatorname{Gr}_{S_{d}^{A *}}^{\mu}(X) \times \operatorname{Gr}_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} \\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

- This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.
- In A. -Brachat- Mourrain (2008), we find an inmersion of $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$, inside the $\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)$ with global equations of deree two. In the following we show how to get $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$ inside a product of Grasmanians with equations of degree two.

Global equations for $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

- I) A Determinantal identity.

Global equations for $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

- I) A Determinantal identity. Let $\Delta:=S_{d}^{A} / I_{d} \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$
$B=\left(b_{1}, \ldots, b_{\mu}\right)$ be a family of homogeneous polynomials of degree d, then, $\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{B_{B}^{\left[b_{i} \mid a\right]}} b_{i}=0$ in Δ, for $a \in S_{d}^{A}$ where $B^{\left[b_{i} \mid a\right]}=\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{\mu}\right)$.

Global equations for $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

- I) A Determinantal identity. Let $\Delta:=S_{d}^{A} / I_{d} \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$
$B=\left(b_{1}, \ldots, b_{\mu}\right)$ be a family of homogeneous polynomials of degree d, then, $\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{B^{\left[b_{i} \mid a\right]}} b_{i}=0$ in Δ, for $a \in S_{d}^{A}$
where $B^{\left[b_{i} \mid a\right]}=\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{\mu}\right)$. Let it be

$$
M:=\left[\begin{array}{cccc}
\delta_{\mathbf{1}}(\mathbf{a}) & \delta_{\mathbf{1}}\left(\boldsymbol{b}_{\mathbf{1}}\right) & \cdots & \delta_{\mathbf{1}}\left(\boldsymbol{b}_{\mu}\right) \\
\vdots & & & \vdots \\
\delta_{\mu}(\mathbf{a}) & \delta_{\mu}\left(\boldsymbol{b}_{\mathbf{1}}\right) & \cdots & \delta_{\mu}\left(\boldsymbol{b}_{\mu}\right) \\
\mathbf{1} & \cdots & \mathbf{1}
\end{array}\right]
$$

and develop its determinant along the last row of M. We get the last equality of rows in the identity below. The others come from developping a deteminant with a repetead row.

$$
M\left[\begin{array}{c}
\Delta_{B} \\
\Delta_{B^{\left[\boldsymbol{b}_{1} \mid a\right]}} \\
\vdots \\
\Delta_{B^{\left[b_{\mu} \mid a\right]}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\operatorname{det}(M)
\end{array}\right]
$$

We conclude that $\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{\left.B^{\left[\boldsymbol{b}_{\boldsymbol{i}} \mid a\right]}\right]} b_{i}=0$ in Δ since all δ_{j} vanishes at this element, and they are a basis of Δ^{*}.

Conti.

- Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P} \boldsymbol{n}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B_{[b] a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.

Conti.

- Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P} \boldsymbol{n}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B_{[b \mid a]}\left[{ }^{2}\right.} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{s_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above.

Conti.

- Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P} \boldsymbol{n}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B_{[b \mid a]}\left[{ }^{2}\right.} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above. (We identify $\Delta \subset S_{d}^{*}$ with $\operatorname{ker}(\Delta) \subset S_{d}$.)

Conti.

- Theorem: Let $d \geq \mu$ be an integer. Hilb $_{p \mathrm{p}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B^{[b] a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above. (We identify $\Delta \subset S_{d}^{*}$ with $k e r(\Delta) \subset S_{d .}$.)

- Let us to prove that $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$. Let B be a basis of Δ (so that $\Delta_{B} \notin m$ is invertible), and let f be an element of ker Δ.

Conti.

- Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P} \boldsymbol{n}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{s_{d}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{s_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B^{[b] a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above. (We identify $\Delta \subset S_{d}^{*}$ with $k e r(\Delta) \subset S_{d}$.)

- Let us to prove that $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$. Let B be a basis of Δ (so that $\Delta_{B} \notin m$ is invertible), and let f be an element of ker Δ. By linearity, equations above imply that $\Delta_{B^{\prime}, x_{k} f}^{\prime}=0$ for all $k=1, \ldots, n$ and all subset B^{\prime} of $\mu-1$ monomials of degree $d+1$ (because $\Delta_{B[b \mid f]}=0$).

Conti.

- Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P} \boldsymbol{n}}^{\mu}(X)$ is the projection on $\mathbf{G r}_{S_{\boldsymbol{d}}^{*}}^{\mu}(X)$ of the variety of $\mathbf{G r}_{S_{\boldsymbol{d}}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{\boldsymbol{d}+\mathbf{1}}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B^{[b \mid a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \times \mathbf{G r}_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above. (We identify $\Delta \subset S_{d}^{*}$ with $\operatorname{ker}(\Delta) \subset S_{\boldsymbol{d}}$.)

- Let us to prove that $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$. Let B be a basis of Δ (so that $\Delta_{B} \notin m$ is invertible), and let f be an element of ker Δ. By linearity, equations above imply that $\Delta_{B^{\prime}, x_{k} f}^{\prime}=0$ for all $k=1, \ldots, n$ and all subset B^{\prime} of $\mu-1$ monomials of degree $d+1$ (because $\Delta_{B^{[b \mid f]}}=0$). Thus, by determinantal Lemma , $x_{k} \cdot f$ belongs to ker Δ^{\prime} for all $k=1, . ., n$ and $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$.

Henri: HAPPY BIG BIRTHDAY!

Henri: HAPPY BIG BIRTHDAY!

THANK YOU FOR YOUR ATTENTION!

