Budan Tables and Virtual Roots of Real Polynomials

André Galligo

Laboratoire J.-A. Dieudonné UMR CNRS 6621 Université de Nice - Sophia Antipolis, France and Galaad team (INRIA, Sophia Antipolis, France.)

> Fête de Henri LOMBARDI Besançon, Octobre, 2011.

• After the works of Gonzales-Vega, Lombardi, Mahé, [GLM:1998], and Coste, Lajous, Lombardi, Roy, [CLLR:2005], we revisit the concept of virtual roots of a univariate polynomial *f* with real coefficients.

• We show, in the generic case, how to locate the virtual roots of f on the Budan table.

• We consider a property (\mathcal{P}) of a polynomial f, which is generically satisfied, it eases the topological-combinatorial description and study of the Budan tables.

• We study the topology of the positive (resp. negative) blocks components of a Budan table, and characterize the virtuals roots using connected blocks components.

• A natural extension of the information collected by the virtual roots provides alternative representations of (\mathcal{P}) -polynomials

• An attached tree structure allows a finite stratification of the space of (\mathcal{P}) -polynomials.

DEFINITION[Budan table]:

Let f be a monic univariate polynomial of degree n. The Budan table of f is the union of n + 1 infinite rectangles of height one $L_i := \mathbb{R} \times [i - 1/2, i + 1/2[$ for i from 0 to n, called rows.

For *i* from 0 to *n*, each row L_i is the union of a set of open rectangles (possibly infinite), separated by vertical segments. We color in black the rectangles corresponding to negative values of the (n - i)-th derivative $f^{(n-i)}$ of *f*, and we color in gray the rectangles corresponding to positive values of $f^{(n-i)}$.

Figure: A Budan table of degree 6

Figure: A Budan table of of degree 10

If b is a root of multiplicity k of f with $k \le n$ then for sufficiently small positive h, denoting by s the sign of $f^{(k)}(b)$, the columns of the Budan table of f near b are shown. Similarly if c is a root of multiplicity k of $f^{(m)}$.

	b-h	b	b+h		c-h	С	c+h
sgn(f)	$(-1)^{k}s$	0	5	$\operatorname{sgn}(f^{(m-1)})$	<i>s</i> ₁	<i>s</i> ₁	<i>s</i> ₁
$\operatorname{sgn}(f')$	$(-1)^{k+1}s$	0	5	$\operatorname{sgn}(f^{(m)})$	$(-1)^k s_2$	0	<i>s</i> ₂
		0	s			0	<i>s</i> ₂
$\operatorname{sgn}(f^{(k-1)})$	— <i>s</i>	0	5	$\operatorname{sgn}(f^{(m+k-1)})$	- <i>s</i> ₂	0	<i>s</i> ₂
$\operatorname{sgn}(f^{(k)})$	S	s	S	$\operatorname{sgn}(f^{(m+k)})$	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₂

• The figure shows that when x moves in **R**, the signs in the columns of a Budan table are continuous on the right.

• A classical descriptor attached to a Budan table is the function $V_f(x)$ of the real indeterminate x with values in the set of integers **N**, it counts the number of sign changes in the sequence formed by f and its derivatives evaluated at x.

• The Budan table is a finer invariant than V_f attached to the polynomial f.

DEFINITION[(\mathcal{P})-polynomials]:

A polynomial in $\mathbf{R}[x]$ satisfies condition (\mathcal{P}) if and only if: each derivative of g has simple roots, and all these roots are two by two distinct.

A monic polynomial satisfying this condition will be called a $(\mathcal{P})\text{-polynomial}.$

The property (\mathcal{P}) is generically satisfied.

Now on, if not specified we will assume that f satisfies condition (\mathcal{P}) .

THEOREM

Let f be a (\mathcal{P}) -polynomial of degree n, and let $m \leq n$ be the number or real (simple) roots of f. Then m and n have the same parity, n = m + 2p and the Budan table of f is a \mathcal{GB} table of degree n.

DEFINITION[Generic Budan table]:

A table *B* with (n + 1) rows L_i formed by rectangles of alternating colors, is a \mathcal{GB} table of degree *n* iff:

• The row L_0 is a gray, the infinite rightest rectangle of each row is gray, The first (infinite) rectangle of each row L_i is alternatively gray or black.

• If *i* is even (resp. odd) the number of rectangles on the row L_i is even (resp. odd).

• Let (l + 1) be the number of rectangles of the top row L_n , then $l \le n$ and n - l is an even number 2p.

There are l + p + 1 same-color-connected components of *B*. Each non first rectangle of L_i , i > 0 is connected on the left to a rectangle of the same color of the row L_{i-1} .

The *I* first rectangles of L_n are in separated same-color-connected components.

The p other connected components, bounded on the right, are surrounded by connected components of the opposite color.

• The previous item is true, replacing n by any m, 0 < m < n, and B by the table formed by the lower m + 1 rows.

DEFINITION[Virtual roots]:

Let f be a (\mathcal{P}) -polynomial of degree n. The x value of the rightest upper segment of a connected component (either gray or black) of the Budan table of f is called a virtual root of f.

Any real root (in the usual sense) of f is a virtual root. Let $m \le n$ be the number or real (simple) roots of f, and let n - m = 2p. There are p virtual non real roots of f, we say that there are of multiplicity two; each of them is a root of some derivative of f of positive order.

Figure: A Budan table of degree 6

Figure: A Budan table of of degree 10

DEFINITION[Augmented Virtual roots]:

We call augmented virtual root of f the pair (y, k) formed by a virtual root of f and the order of the derivative of f which vanishes at y, i.e. $f^{(k)}(y) = 0$.

The augmented virtual roots of f only depend on the Budan table BT of f.

PROPOSITION

Let f be a (\mathcal{P}) -polynomial of degree n.

By Rolle's theorem between two successive roots a < b of some derivative $f^{(m)}$ with $0 \le m \le n-2$, (or in **R** if $f^{(m)}$ has no root), there is an odd number 2r + 1 of roots $(X_1 < ... < X_{2r+1})$ of the next derivative $f^{(m+1)}$.

Then the *r* roots with an even index $(X_2, ..., X_{2r})$ are virtual non real roots of *f*. (Respectively in the infinite interval.)

For each augmented virtual non real root (y, k) of f, we have

$$f^{(k-1)}(y)f^{(k+1)}(y) > 0.$$

DEFINITION[S(f)]:

We denote by S(f) the system of n = m + 2p data formed by: the *m* real roots $(x_i), 1 \le i \le m$, of *f*; the *p* augmented virtual root $(y_j, k_j), 1 \le j \le p$ with k > 0and the *p* corresponding values $w_i := f^{(k-1)}(y_i), 1 \le j \le p$.

PROPOSITION:

Two different (\mathcal{P})-polynomials f and g define different systems $\mathcal{S}(f) \neq \mathcal{S}(g)$

It corresponds to a so-called homogeneous Hermite-Birkhoff interpolation problem.

QUESTIONS:

Q1 Given a system S as above, does there exist a (\mathcal{P})-polynomial f which satisfies these data ? Q2 Let B be a \mathcal{GB} table of degree n, does there exist a (\mathcal{P})-polynomial f of degree n, which admits B as its Budan table? The general answers is NO !

PROPOSITION:

The transposed incidence matrix E of a (\mathcal{P}) -polynomial f only depends on the augmented virtual roots (y_i, k_i) of f. It is the (n, m + p)-matrix $E = (e_{j,i})$ such that n of its entries are 1, and the others are 0 according to the following rule:

1. If
$$k_i = 0$$
 then $e_{0,i} = 1$.

2. If
$$k_i > 0$$
 then $e_{k_i,i} = 1$ and $e_{k_i-1,i} = 1$.

3. Otherwise $e_{j,i} = 0$.

HINT: It is proved that a homogeneous HB problem whose incidence matrix is both conservative and satisfies Polya condition, has only the trivial solution.

The previously defined matrix E (attached to m + p augmented virtual roots) is conservative and satisfies Polya condition.

There exist a unique monic polynomial F satisfying the vanishing conditions :

$$F(x_i) = 0, 1 \le j \le m+, \ F^{(k_i)}(y_i) = 0, 1 \le j \le p$$
,
 $w_i := F^{(k_i-1)}(y_i), 1 \le i \le p.$

DEFINITION[Budan tree]:

In the Budan table of (\mathcal{P}) -polynomial f, we replace the list of the augmented virtual roots (y_i, k_i) , by the corresponding list of pairs of integers (i, k_i) . with $1 \le i \le m + p$ to form the nodes of a bi color tree with n + 1 leaves.

The edges are obtained by contracting the same-color-connected components.

We say that the Budan tree is decorated if the coordinates (i, k_i) , $1 \le i \le m + p$ of its nodes are given.

Figure: A Budan tree of degree 6

Figure: A Budan tree of degree 10

QUESTION:

Q3 Let *B* be a \mathcal{GB} table of degree *n*, does there exist a (\mathcal{P}) -polynomial *f* of degree *n*, which admits the same Budan tree than *B* ?

DEFINITION[Stratifications]:

Let \mathcal{T} denote a decorated Budan tree, denote by \mathcal{T} the non decorated tree.

We consider the stratum $\Sigma_{\mathcal{T}}$ (resp. $\Theta_{\mathcal{T}}$) formed by all the (\mathcal{P})-polynomials fsuch that $\mathcal{T}(f) = \mathcal{T}$ (resp. $\Theta_{\mathcal{T}}(f) = \mathcal{T}$).

PROPOSITION:

The stratum Σ_T and Θ_T are semi-algebraic sets. The virtual roots of a the polynomials f in a stratum Σ_T depend analytically on the coefficients of f.

QUESTION:

Q4 Are the strata $\Sigma_{\mathcal{T}}$ connected in the set of (\mathcal{P})-polynomials ?

The previous constructions can be extended to non-generic polynomials.

Let us now quote a continuity result of Gonzales-Vega, Lombardi, Mahé, [GLM:1998], and Coste, Lajous, Lombardi, Roy, [CLLR:2005].

THEOREM:

The virtual roots of a monic polynomial f depend continuously on the coefficients of f.

There are different possible extensions of our work:

Truncated Budan tables.

Fewnomials.

"Circular" differentiation.

Replace the input polynomial f(x) of degree *n* by its homogenization F(X, Y) in degree *n*, and then set X = cos(t), Y = sin(t) to get a trigonometric polynomial G(t) depending on *n* coefficients.

BONNE

FETE

HENRI

!!!!!!!!!!!!!