Budan Tables and Virtual Roots of Real Polynomials

André Galligo
Laboratoire J.-A. Dieudonné UMR CNRS 6621
Université de Nice - Sophia Antipolis, France and Galaad team (INRIA, Sophia Antipolis, France.)

Fête de Henri LOMBARDI
Besançon, Octobre, 2011.

- After the works of Gonzales-Vega, Lombardi, Mahé, [GLM:1998], and Coste, Lajous, Lombardi, Roy, [CLLR:2005], we revisit the concept of virtual roots of a univariate polynomial f with real coefficients.
- We show, in the generic case, how to locate the virtual roots of f on the Budan table.
- We consider a property (\mathcal{P}) of a polynomial f, which is generically satisfied, it eases the topological-combinatorial description and study of the Budan tables.
- We study the topology of the positive (resp. negative) blocks components of a Budan table, and characterize the virtuals roots using connected blocks components.
- A natural extension of the information collected by the virtual roots provides alternative representations of (\mathcal{P})-polynomials
- An attached tree structure allows a finite stratification of the space of (\mathcal{P})-polynomials.

DEFINITION[Budan table]:

Let f be a monic univariate polynomial of degree n.
The Budan table of f is the union of $n+1$ infinite rectangles of height one $L_{i}:=\mathbb{R} \times[i-1 / 2, i+1 / 2[$ for i from 0 to n, called rows.
For i from 0 to n, each row L_{i} is the union of a set of open rectangles (possibly infinite), separated by vertical segments. We color in black the rectangles corresponding to negative values of the $(n-i)$-th derivative $f^{(n-i)}$ of f, and we color in gray the rectangles corresponding to positive values of $f^{(n-i)}$.

Figure: A Budan table of degree 6

Figure: A Budan table of of degree 10

If b is a root of multiplicity k of f with $k \leq n$ then for sufficiently small positive h, denoting by s the sign of $f^{(k)}(b)$, the columns of the Budan table of f near b are shown.
Similarly if c is a root of multiplicity k of $f^{(m)}$.

	b-h	b	b+h		c-h	c	c+h	
$\operatorname{sgn}(f)$	$(-1)^{k} s$	0	s		$\operatorname{sgn}\left(f^{(m-1)}\right)$	s_{1}	s_{1}	s_{1}
$\operatorname{sgn}\left(f^{\prime}\right)$	$(-1)^{k+1} s$	0	s		$\operatorname{sgn}\left(f^{(m)}\right)$	$(-1)^{k} s_{2}$	0	s_{2}
\ldots	\cdots	0	s		\ldots	\cdots	0	s_{2}
$\operatorname{sgn}\left(f^{(k-1)}\right)$	$-s$	0	s	$\operatorname{sgn}\left(f^{(m+k-1)}\right)$	$-s_{2}$	0	s_{2}	
$\operatorname{sgn}\left(f^{(k)}\right)$	s	s	s		$\operatorname{sgn}\left(f^{(m+k)}\right)$	s_{2}	s_{2}	s_{2}

- The figure shows that when x moves in \mathbf{R}, the signs in the columns of a Budan table are continuous on the right.
- A classical descriptor attached to a Budan table is the function $V_{f}(x)$ of the real indeterminate x with values in the set of integers \mathbf{N}, it counts the number of sign changes in the sequence formed by f and its derivatives evaluated at x.
- The Budan table is a finer invariant than V_{f} attached to the polynomial f.

DEFINITION[(P)-polynomials]:

A polynomial in $\mathbf{R}[x]$ satisfies condition (\mathcal{P}) if and only if: each derivative of g has simple roots, and all these roots are two by two distinct.
A monic polynomial satisfying this condition will be called a (\mathcal{P})-polynomial.
The property (\mathcal{P}) is generically satisfied.
Now on, if not specified we will assume that f satisfies condition (\mathcal{P}).

THEOREM

Let f be a (\mathcal{P})-polynomial of degree n, and let $m \leq n$ be the number or real (simple) roots of f. Then m and n have the same parity, $n=m+2 p$ and the Budan table of f is a $\mathcal{G B}$ table of degree n.

DEFINITION[Generic Budan table]:

A table B with $(n+1)$ rows L_{i} formed by rectangles of alternating colors, is a $\mathcal{G B}$ table of degree n iff:

- The row L_{0} is a gray, the infinite rightest rectangle of each row is gray, The first (infinite) rectangle of each row L_{i} is alternatively gray or black.
- If i is even (resp. odd) the number of rectangles on the row L_{i} is even (resp. odd).
- Let $(I+1)$ be the number of rectangles of the top row L_{n}, then $l \leq n$ and $n-l$ is an even number $2 p$.
There are $I+p+1$ same-color-connected components of B.
Each non first rectangle of $L_{i}, i>0$ is connected on the left to a rectangle of the same color of the row L_{i-1}.
The I first rectangles of L_{n} are in separated same-color-connected components.
The p other connected components, bounded on the right, are surrounded by connected components of the opposite color.
- The previous item is true, replacing n by any $m, 0<m<n$, and B by the table formed by the lower $m+1$ rows.

DEFINITION[Virtual roots]:

Let f be a (\mathcal{P})-polynomial of degree n. The x value of the rightest upper segment of a connected component (either gray or black) of the Budan table of f is called a virtual root of f.

Any real root (in the usual sense) of f is a virtual root. Let $m \leq n$ be the number or real (simple) roots of f, and let $n-m=2 p$. There are p virtual non real roots of f, we say that there are of multiplicity two; each of them is a root of some derivative of f of positive order.

Figure: A Budan table of degree 6

Figure: A Budan table of of degree 10

DEFINITION[Augmented Virtual roots]:

We call augmented virtual root of f the pair (y, k) formed by a virtual root of f and the order of the derivative of f which vanishes at y, i.e. $f^{(k)}(y)=0$.

The augmented virtual roots of f only depend on the Budan table $B T$ of f.

PROPOSITION

Let f be a (\mathcal{P})-polynomial of degree n.
By Rolle's theorem between two successive roots $a<b$ of some derivative $f^{(m)}$ with $0 \leq m \leq n-2$, (or in \mathbf{R} if $f^{(m)}$ has no root), there is an odd number $2 r+1$ of roots $\left(X_{1}<\ldots<X_{2 r+1}\right)$ of the next derivative $f^{(m+1)}$.

Then the r roots with an even index $\left(X_{2}, \ldots X_{2 r}\right)$ are virtual non real roots of f. (Respectively in the infinite interval.)
For each augmented virtual non real root (y, k) of f, we have

$$
f^{(k-1)}(y) f^{(k+1)}(y)>0
$$

DEFINITION[S $(f)]$:

We denote by $\mathcal{S}(f)$ the system of $n=m+2 p$ data formed by: the m real roots $\left(x_{i}\right), 1 \leq i \leq m$, of f; the p augmented virtual root $\left(y_{j}, k_{j}\right), 1 \leq j \leq p$ with $k>0$ and the p corresponding values $w_{j}:=f^{(k-1)}\left(y_{j}\right), 1 \leq j \leq p$.

PROPOSITION:

Two different (\mathcal{P})-polynomials f and g define different systems $\mathcal{S}(f) \neq \mathcal{S}(g)$

It corresponds to a so-called homogeneous Hermite-Birkhoff interpolation problem.

QUESTIONS:

Q1 Given a system \mathcal{S} as above, does there exist a (\mathcal{P})-polynomial f which satisfies these data?
Q2 Let B be a $\mathcal{G B}$ table of degree n, does there exist a (\mathcal{P})-polynomial f of degree n, which admits B as its Budan table?
The general answers is NO!

PROPOSITION:

The transposed incidence matrix E of a (\mathcal{P})-polynomial f only depends on the augmented virtual roots $\left(y_{i}, k_{i}\right)$ of f. It is the $(n, m+p)$-matrix $E=\left(e_{j, i}\right)$ such that n of its entries are 1 , and the others are 0 according to the following rule:

1. If $k_{i}=0$ then $e_{0, i}=1$.
2. If $k_{i}>0$ then $e_{k_{i}, i}=1$ and $e_{k_{i}-1, i}=1$.
3. Otherwise $e_{j, i}=0$.

HINT: It is proved that a homogeneous HB problem whose incidence matrix is both conservative and satisfies Polya condition, has only the trivial solution.

The previously defined matrix E (attached to $m+p$ augmented virtual roots) is conservative and satisfies Polya condition.

There exist a unique monic polynomial F satisfying the vanishing conditions :
$F\left(x_{i}\right)=0,1 \leq j \leq m+, F^{\left(k_{i}\right)}\left(y_{i}\right)=0,1 \leq j \leq p$,
$w_{l}:=F^{\left(k_{i}-1\right)}\left(y_{i}\right), 1 \leq i \leq p$.

DEFINITION[Budan tree]:

In the Budan table of (\mathcal{P})-polynomial f, we replace the list of the augmented virtual roots $\left(y_{i}, k_{i}\right)$, by the corresponding list of pairs of integers $\left(i, k_{i}\right)$. with $1 \leq i \leq m+p$ to form the nodes of a bi color tree with $n+1$ leaves.
The edges are obtained by contracting the same-color-connected components.

We say that the Budan tree is decorated if the coordinates $\left(i, k_{i}\right)$, $1 \leq i \leq m+p$ of its nodes are given.

Figure: A Budan tree of degree 6

Figure: A Budan tree of degree 10

QUESTION:

Q3 Let B be a $\mathcal{G B}$ table of degree n, does there exist a (\mathcal{P})-polynomial f of degree n, which admits the same Budan tree than B ?

DEFINITION[Stratifications]:

Let T denote a decorated Budan tree, denote by \mathcal{T} the non decorated tree.

We consider the stratum $\Sigma_{T}\left(\right.$ resp. $\left.\Theta_{\mathcal{T}}\right)$ formed by all the (\mathcal{P})-polynomials f such that $T(f)=T\left(\right.$ resp. $\left.\Theta_{\mathcal{T}}(f)=\mathcal{T}\right)$.

PROPOSITION:

The stratum Σ_{T} and $\Theta_{\mathcal{T}}$ are semi-algebraic sets.
The virtual roots of a the polynomials f in a stratum Σ_{T} depend analytically on the coefficients of f.

QUESTION:

Q4 Are the strata Σ_{T} connected in the set of (\mathcal{P})-polynomials ?

The previous constructions can be extended to non-generic polynomials.

Let us now quote a continuity result of Gonzales-Vega, Lombardi, Mahé, [GLM:1998], and Coste, Lajous, Lombardi, Roy, [CLLR:2005].

THEOREM:
The virtual roots of a monic polynomial f depend continuously on the coefficients of f.

There are different possible extensions of our work:
Truncated Budan tables.

Fewnomials.
"Circular" differentiation.
Replace the input polynomial $f(x)$ of degree n by its homogenization $F(X, Y)$ in degree n, and then set $X=\cos (t), Y=\sin (t)$ to get a trigonometric polynomial $G(t)$ depending on n coefficients.

BONNE

FETE

HENRI

!!!!!!!!!!!!!

