Generalized geometric theories and set-generated classes

Hajime Ishihara (joint work with Takako Nemoto and Yasushi Sangu)

> School of Information Science Japan Advanced Institute of Science and Technology Nomi, Ishikawa 923-1292, Japan

> > Besançon, October 15, 2011

Contents

- The constructive set theory, CZF
- Set-generated classes
- Generalized geometric implications and theories
- ▶ The main result
 - ► assuming RRS₂-uREA
 - assuming RDC
- Applications
 - Algebra
 - Topology
 - Formal topology
 - Basic pair

The constructive set theory, CZF

The constructive Zermelo-Fraenkel set theory, CZF (Aczel, 1978)

- has a quite natural interpretation in the Martin-Löf type theory
- is a predicative theory
 - without power set axiom
 - without full separation axiom
 - with restricted separation axiom

The axioms and rules of **CZF** are the axioms and rules of intuitionistic predicate logic with equality, and the following set theoretic axioms:

- ▶ Extensionality: $\forall a \forall b (\forall x (x \in a \leftrightarrow x \in b) \rightarrow a = b)$.
- ▶ Pairing: $\forall a \forall b \exists c \forall x (x \in c \leftrightarrow x = a \lor x = b).$
- ▶ Union: $\forall a \exists b \forall x (x \in b \leftrightarrow \exists y \in a(x \in y)).$
- Restricted Separation:

$$\forall a \exists b \forall x (x \in b \leftrightarrow x \in a \land \varphi(x))$$

for every restricted formula $\varphi(x)$, where a formula $\varphi(x)$ is restricted, or Δ_0 , if all the quantifiers occurring in it are bounded, i.e. of the form $\forall x \in c$ or $\exists x \in c$.

► Strong Collection:

$$\forall a(\forall x \in a \exists y \varphi(x, y) \rightarrow \exists b(\forall x \in a \exists y \in b \varphi(x, y) \land \forall y \in b \exists x \in a \varphi(x, y)))$$

for every formula $\varphi(x, y)$.

► Subset Collection:

$$\forall a \forall b \exists c \forall u (\forall x \in a \exists y \in b \varphi(x, y, u) \rightarrow \\ \exists d \in c (\forall x \in a \exists y \in d \varphi(x, y, u) \land \forall y \in d \exists x \in a \varphi(x, y, u)))$$

for every formula $\varphi(x, y, u)$.

► Infinity:

(N1)
$$0 \in \mathbb{N} \land \forall x (x \in \mathbb{N} \to x + 1 \in \mathbb{N}),$$

(N2) $\forall y (0 \in y \land \forall x (x \in y \to x + 1 \in y) \to \mathbb{N} \subseteq y),$

where x + 1 is $x \cup \{x\}$, and 0 is the empty set \emptyset .

► ∈-Induction:

$$(\mathrm{IND}_{\in}) \qquad \forall a(\forall x \in a\varphi(x) \to \varphi(a)) \to \forall a\varphi(a)$$

for every formula $\varphi(a)$.

- ▶ For each formula φ , the collection $\{x \mid \varphi(x)\}$ is a *class*.

 - ▶ $\{x \mid x \subseteq y\}$ is a class.
- ▶ A class C is a set if $\exists x \forall y (y \in C \leftrightarrow y \in x)$.

▶ The class of total relations between a and b is denoted by mv(a, b):

$$r \in \operatorname{mv}(a, b) \Leftrightarrow r \subseteq a \times b \wedge \forall x \in a \exists y \in b((x, y) \in r).$$

▶ The class of functions from a to b is denoted by b^a :

$$f \in b^a \Leftrightarrow f \in mv(a, b)$$

 $\land \forall x \in a \forall y, z \in b((x, y) \in f \land (x, z) \in f \rightarrow y = z).$

In CZF, we can prove

► Fullness:

$$\forall a \forall b \exists c (c \subseteq \operatorname{mv}(a, b) \land \forall r \in \operatorname{mv}(a, b) \exists s \in c (s \subseteq r)),$$

and, as a corollary, we see that b^a is a set, that is

▶ Exponentiation: $\forall a \forall b \exists c \forall f (f \in c \leftrightarrow f \in b^a).$

Set-generated classes

A class X of subsets of a set S is set-generated if there exists a subset G of X such that

$$\alpha = \bigcup \{ \beta \in G \mid \beta \subseteq \alpha \}$$

for each $\alpha \in X$. We call the set G a generating subset of the class X.

- ► The class Pow(S) of opens of the discrete topology on a set S is not a set in CZF.
- ▶ A base $\{\{s\} \mid s \in S\}$ of the opens Pow(S) is a set in **CZF**.
- Note that Pow(S) is a set-generated class with a generating subset $\{\{s\} \mid s \in S\}$.

Set-generated classes

Proposition

Let X be a class of inhabited subsets of a set S, and let Min(X) be a class of minimal elements of X, that is,

$$\operatorname{Min}(X) = \{ x \in X \mid \forall y \in X (y \subseteq x \to y = x) \}.$$

If X is set-generated, then Min(X) is a set.

Implications and theories

Definition

The generalized geometric implications (simply, implications) and generalized geometric theories (simply, theories) over a set S, and their rank, are defined simultaneously by

- 1. s is a implication of rank 0 for each $s \in S$;
- 2. if σ is a finite subset of S and Γ is a set of theories of rank n, then $\bigwedge \sigma \to \bigvee_{U \in \Gamma} \bigwedge U$ is a implication of rank n+1;
- 3. a set T of implications of rank $\leq n$ is a theory of rank n.

Implications and theories

- $\bigvee_{U \in \Gamma} \bigwedge U \equiv \bigwedge \emptyset \to \bigvee_{U \in \Gamma} \bigwedge U,$
- $\blacktriangleright \bigwedge \sigma \to \bigvee_{\varphi \in U} \varphi \equiv \bigwedge \sigma \to \bigvee_{\varphi \in U} \bigwedge \{\varphi\},\$

Models of theories

For an implication $\varphi \equiv \bigwedge \sigma \to \bigvee_{U \in \Gamma} \bigwedge U$ of positive rank, we denote the sets σ and Γ by σ_{φ} and Γ_{φ} , respectively.

Definition

The relation \models between a subset α of S, and implications s (of rank 0), φ (of positive rank) and a theory T over S is defined by

- 1. $\alpha \models s \text{ if } s \in \alpha$;
- 2. $\alpha \models \varphi$ if $\sigma_{\varphi} \subseteq \alpha$ implies $\alpha \models U$ for some $U \in \Gamma_{\varphi}$;
- 3. $\alpha \models T$ if $\alpha \models \theta$ for all $\theta \in T$.

We say that α is a *model* of a theory T if $\alpha \models T$. The class of models of T is denoted by $\mathfrak{M}(T)$.

Extensions

An extension S' of a set S is a set with an inclusion (i.e., an injection) $\iota:S\to S'$.

We can naturally extend the inclusion ι to an inclusion $\hat{\iota}$ from the implications and the theories over S into the implications and the theories over S' of same rank by

$$\hat{\iota}(s) = \iota(s),
\hat{\iota}(\varphi) = \bigwedge \iota(\sigma_{\varphi}) \to \bigvee_{U \in \Gamma_{\varphi}} \bigwedge \hat{\iota}(U),
\hat{\iota}(T) = {\hat{\iota}(\theta) \mid \theta \in T},$$

where s and φ are implications of rank 0 and of positive rank, respectively, and T is a theory.

Extensions

Lemma

Let T be a theory over S, and let S' be an extension of S with an inclusion ι . Then $\iota^{-1}(\alpha') \in \mathfrak{M}(T)$ if and only if $\alpha' \in \mathfrak{M}(\hat{\iota}(T))$ for each $\alpha' \in \operatorname{Pow}(S')$.

Extensions

Let S' be an extension of a set S with an inclusion ι .

- ▶ A theory T' over S' is an extension of a theory T over S if $\iota^{-1}(\alpha') \in \mathfrak{M}(T)$ for each $\alpha' \in \mathfrak{M}(T')$.
- ▶ An extension is *conservative* if for each $\alpha \in \mathfrak{M}(T)$ there exists $\alpha' \in \mathfrak{M}(T')$ such that $\alpha = \iota^{-1}(\alpha')$.

Note that the theory $\hat{\iota}(T)$ is a conservative extension of a theory T.

Rank reduction

Proposition

Each theory of rank n+1 ($n \ge 1$) has a conservative extension of rank n.

Proposition

Let T' be a conservative extension of a theory T. If the class $\mathfrak{M}(T')$ of models of the theory T' is set-generated, then the class $\mathfrak{M}(T)$ of models of the theory T is set-generated.

Regular extension axiom

▶ A set A is *regular* if it is *transitive*, i.e. $a \subseteq A$ for each $a \in A$, and for each $a \in A$ and $R \in mv(a, A)$ there exists $b \in A$ such that

$$\forall x \in a \exists y \in b((x, y) \in R) \land \forall y \in b \exists x \in a((x, y) \in R).$$

▶ A set A is union-closed if $\bigcup a \in A$ for each $a \in A$.

uREA: Every set is a subset of a union-closed regular set.

Regular extension axiom

▶ A regular set A is RRS_2 -regular if for each $A' \subseteq A$, $R \in mv(A' \times A', A')$ and $a_0 \in A'$, there exists $A_0 \in A$ such that $a_0 \in A_0 \subseteq A'$ and $\forall x, y \in A_0 \exists z \in A_0(((x, y), z) \in R)$.

 RRS_2 -uREA: Every set is a subset of a union-closed RRS_2 -regular set.

Regular extension axiom

DC: If $\forall x \in a \exists y \in a \psi(x, y)$ and $b_0 \in a$, then there exists a function $f : \mathbf{N} \to a$ such that $f(0) = b_0$ and

$$\forall n \in \mathbf{N}\psi(f(n), f(n+1)).$$

Proposition

 $uREA + DC \Rightarrow RRS_2 - uREA$.

Theorem

Assume $\mathrm{RRS}_2\text{-}\mathrm{uREA}$. Then the class $\mathfrak{M}(T)$ of models of a theory T of rank 1 is set-generated.

Relativized dependent choice

Let ϕ and ψ be arbitrary formulas.

RDC: If $\forall x [\phi(x) \to \exists y (\phi(y) \land \psi(x,y))]$ and $\phi(b_0)$, then there exists a function f with domain \mathbf{N} such that $f(0) = b_0$ and

$$\forall n \in \mathbf{N}[\phi(f(n)) \wedge \psi(f(n), f(n+1))].$$

Note that RDC implies DC.

Theorem

Assume RDC. Then the class $\mathfrak{M}(T)$ of models of a theory T of rank 1 is set-generated.

Main result

Theorem

Assume RRS_2 -uREA or RDC. Then the class $\mathfrak{M}(T)$ of models of a theory T of rank n is set-generated.

Algebra

Let $(R, +, \cdot, -, 0, 1)$ be a commutative ring.

- ▶ A subset *I* of *R* is an *ideal I* if
 - 1. $0 \in I$,
 - 2. $x, y \in I \Rightarrow x y \in I$,
 - 3. $x \in R, y \in I \Rightarrow x \cdot y \in I$.

Proposition

Assume ${
m RRS}_2\text{-}{
m uREA}$ or ${
m RDC}$. Then the class of ideals is set-generated.

Proof.

Note that the class of ideals is the class of models of the theory:

$$\{0\} \cup \{\bigwedge\{x,y\} \to x - y \mid x,y \in R\}$$

$$\cup \{y \to x \cdot y \mid x,y \in R\}.$$

Algebra

▶ An ideal *I* is *nontrivial* if there is $x \in I$ with $\neg(x = 0)$.

Proposition

Assume RRS_2 -uREA or RDC. Then the class of minimal nontrivial ideals is a set.

Proof.

Note that the class of nontrivial ideals is the class of models of the theory:

$$\{0\} \cup \{\bigvee_{x \in \{x \in R \mid \neg(x=0)\}} x\}$$

$$\cup \{\bigwedge\{x, y\} \to x - y \mid x, y \in R\}$$

$$\cup \{y \to x \cdot y \mid x, y \in R\}.$$

Neighbourhood space

- ▶ A neighbourhood space is a pair (X, τ) consisting of a set X and a subset τ of Pow(X) such that
 - 1. $\forall x \in X \exists U \in \tau(x \in U)$,
 - 2. $\forall x \in X \forall U, V \in \tau[x \in U \cap V \to \exists W \in \tau(x \in W \subseteq U \cap V)]$.

We say that τ is an open base on X.

- ▶ A subset A of X is open if for each $x \in A$ there exists $U \in \tau$ such that $x \in U \subseteq A$.
- A function f between neighbourhoos spaces (X, τ) and (Y, σ) is continuous if $f^{-1}(V)$ is open for each $V \in \sigma$.

Neighbourhood space

Let X be a set.

Let $\{(X_i, \tau_i) \mid i \in I\}$ be a family of neighbourhood spaces, and let $\{f_i : X_i \to X \mid i \in I\}$ be a family of functions.

▶ An open base τ on X is *final* for the family $\{f_i \mid i \in I\}$ if for any neighbourhood space (Y, σ) and any function $g: X \to Y$,

g is continuous $\Leftrightarrow g \circ f_i : X_i \to Y$ is continuous for each $i \in I$.

Neighbourhood space

Proposition

Assume RRS₂-uREA or RDC. Then the class

$$C = \{U \in \text{Pow}(X) \mid f_i^{-1}(U) \text{ is open for each } i \in I\}$$

is set-generated, and the generating set is a final open base on X .

Proof.

Note that C is the class of models of the theory:

$$\{f_i(x) \to \bigvee_{x \in V \in \tau_i} \bigwedge_{y \in V} f_i(y) \mid x \in X_i, i \in I\}.$$

- ▶ A formal topology (S, \leq, \lhd) is a preordered set (S, \leq) equipped with a subclass $\lhd \subseteq S \times \text{Pow}(S)$ such that
 - 1. $a \in U \Rightarrow a \triangleleft U$,
 - 2. $a \triangleleft U$ and $\forall c \in U(c \triangleleft V) \Rightarrow a \triangleleft V$,
 - 3. $a \triangleleft U$ and $a \triangleleft V \Rightarrow a \triangleleft \downarrow U \cap \downarrow V$,
 - 4. $a \leq b \Rightarrow a \triangleleft \{b\}$,

where $\downarrow U = \{a \in S \mid \exists b \in U(a \leq b)\}.$

▶ A formal topology (S, \leq, \lhd) is *set-presented* if there exists a family of subsets C(a, i) of S, where $i \in I(a)$ and $a \in S$, such that

$$a \triangleleft U \Leftrightarrow \exists i \in I(a)(C(a,i) \subseteq U).$$

Let (S, \leq, \lhd) be a formal topology.

- ▶ A formal point of a formal topology (S, \leq, \lhd) is a subset $\alpha \subseteq S$ such that
 - 1. α is inhabited,
 - 2. $a, b \in \alpha \Rightarrow (\downarrow a \cap \downarrow b) \emptyset \alpha$
 - 3. $a \in \alpha$ and $a \triangleleft U \Rightarrow U \not \ \alpha$.

If (S, \leq, \lhd) is set-presented, then the condition 3 is equivalent to

$$\forall i \in I(a)[a \in \alpha \Rightarrow C(a,i) \ \ \alpha].$$

Proposition

Assume ${\rm RRS_2\text{-}uREA}$ or ${\rm RDC}$. Then the class of formal points of a set-presented formal topology is set-generated.

Proof.

Note that the class of formal points is the class of models of the theory:

$$\begin{aligned} & \{\bigvee_{a \in S} a\} \\ & \cup & \{\bigwedge\{a,b\} \to \bigvee_{c \in \downarrow a \cap \downarrow b} c \mid a,b \in S\} \\ & \cup & \{a \to \bigvee_{b \in C(a,i)} b \mid i \in I(a), a \in S\}. \end{aligned}$$

Corollary

Assume RRS_2 -uREA or RDC. Then the class of minimal formal points of a set-presented formal topology is a set.

A formal topology (S, \leq, \triangleleft) is T_1 if $\alpha \subseteq \beta \Rightarrow \alpha = \beta$ for each formal points α and β .

Corollary

Assume RRS_2 -uREA or RDC. Then the class of formal points of a set-presented T_1 formal topology is a set.

- ▶ A continuous morphism from a formal topology (S, \leq, \lhd) into a formal topology (S', \leq', \lhd') is a relation $r \subseteq S \times S'$ such that
 - 1. a r b and $b \triangleleft' V \Rightarrow a \triangleleft r^{-1}(V)$,
 - 2. $a \triangleleft r^{-1}(S')$,
 - 3. a r b and $a r c \Rightarrow a \triangleleft r^{-1}(\downarrow b \cap \downarrow c)$.
 - 4. $a \triangleleft r^{-1}b \Rightarrow a r b$,

If (S, \leq, \lhd) and (S', \leq', \lhd') are set-presented, then the conditions 1, 2 and 3 are respectively equivalent to

- $\forall j \in I'(b)[a \ r \ b \Rightarrow \exists i \in I(a) \forall a' \in C(a,i) \exists b' \in C'(b,j)(a' \ r \ b')],$
- $\exists i \in I(a) \forall a' \in C(a,i) \exists b \in S'(a' \ r \ b),$
- ▶ arb and arc $\Rightarrow \exists i \in I(a) \forall a' \in C(a,i) \exists d \in \downarrow b \cap \downarrow c(a' r d)$.

Proposition

Assume ${
m RRS_2}$ -uREA or RDC. Then the class of continuous morphisms between set-presented formal topologies is set-generated.

Proof.

Note that the class R of relations satisfying the condition 1, 2 and 3 is the class of models of the theory:

$$\{(a,b) \to \bigvee_{i \in I(a)} \bigwedge_{a' \in C(a,i)} \bigvee_{b' \in C'(b,j)} (a',b')$$

$$| j \in I'(b), a \in S, b \in S' \}$$

$$\cup \{\bigvee_{i \in I(a)} \bigwedge_{a' \in C(a,i)} \bigvee_{b \in S'} (a',b) | a \in S \}$$

$$\cup \{\bigwedge \{(a,b),(a,c)\} \to \bigvee_{i \in I(a)} \bigwedge_{a' \in C(a,i)} \bigvee_{d \in \downarrow} \bigcup_{b \cap \downarrow} c(a',d)$$

$$| a \in S, b, c \in S' \},$$

and the class of continuous morphisms is given by

$$\{\{(a,b) \mid a \lhd r^{-1}b\} \mid r \in R\}.$$

Basic pair (joint work with Tatsuji Kawai)

- ▶ A basic pair is a triple (X, \Vdash, S) of sets X and S and a relation $\Vdash \subseteq X \times S$.
- ▶ A relation pair between basic pairs (X, \Vdash, S) and (X', \Vdash', S') is a pair (r, s) of relations with $r \subseteq X \times X'$ and $s \subseteq S \times S'$ such that

$$\Vdash' \circ r = s \circ \Vdash$$
.

▶ Two relation pairs (r_1, s_1) and (r_2, s_2) between pasic pairs (X, \Vdash, S) and (X', \vdash', S') are *equivalent*, denoted by $(r_1, s_1) \sim (r_2, s_2)$, if

$$\Vdash' \circ r_1 = \Vdash' \circ r_2$$
,

or equivalently

$$s_1 \circ \Vdash = s_2 \circ \Vdash$$
.

Basic pair (joint work with Tatsuji Kawai)

Theorem

Assume ${\rm RRS}_2\text{-}{\rm uREA}$ or ${\rm RDC}$. Then coequalizers exist in the category of basic pairs.

Basic pair (joint work with Tatsuji Kawai)

Proof.

Let (r_1, s_1) and (r_2, s_2) be relation pair between basic pairs (X, \Vdash, S) and (X', \Vdash', S') . Then the class

$$Q = \{ U \in Pow(S') \mid (s_1 \circ \Vdash)^{-1}(U) = (s_2 \circ \Vdash)^{-1}(U) \}$$

is the class of the models of the theory:

$$\{a \to \bigwedge_{x \in (s_1 \circ | \vdash)^{-1}(a)} \bigvee_{b \in (s_2 \circ | \vdash)(x)} b \mid a \in S'\}$$

$$\cup \quad \{a \to \bigwedge_{x \in (s_2 \circ | \vdash)^{-1}(a)} \bigvee_{b \in (s_1 \circ | \vdash)(x)} b \mid a \in S'\}.$$

Let G be a generating set of Q. Then (X', \Vdash', G) with a relation pair $(\mathrm{id}_{X'}, \in)$ is a coequalizer for (r_1, s_1) and (r_2, s_2) .