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The constructive set theory, CZF

The constructive Zermelo-Fraenkel set theory, CZF (Aczel, 1978)

» has a quite natural interpretation in the Martin-Lof type
theory
> is a predicative theory

» without power set axiom
» without full separation axiom
» with restricted separation axiom



CZF

The axioms and rules of CZF are the axioms and rules of
intuitionistic predicate logic with equality, and the following set
theoretic axioms:

Extensionality:  VaVb(Vx(x € a«++ x € b) = a = b).
Pairing:  VaVb3cVx(x € c<>x =aV x = b).
Union:  VadbVx(x € b4+ dy € a(x € y)).

vV V. vV

Restricted Separation:
VadbVx(x € b+ x € aA p(x))

for every restricted formula ¢(x), where a formula ¢(x) is
restricted, or Ay, if all the quantifiers occurring in it are
bounded, i.e. of the form Vx € ¢ or dx € c.



CZF

» Strong Collection:

Va(Vx € adyp(x, y)—
db(Vx € ady € bp(x,y) AVy € bIx € ap(x,y)))

for every formula ¢(x, y).

» Subset Collection:

VaVb3cVu(Vx € ady € byp(x,y, u)—
Ad € ¢(Vx € ady € dp(x,y,u) AVy € dIx € ap(x,y, u)))

for every formula ¢(x, y, u).



CZF

> Infinity:
(N1) 0eNAVx(x e N—x+1¢€N),
(N2) Vy(0 ey AVx(x ey —-x+1€y)—=>NCy),

where x + 1 is x U {x}, and 0 is the empty set ).

» E-Induction:
(IND¢) Va(Vx € ap(x) — ¢(a)) — Vap(a)

for every formula ¢(a).



CZF

» For each formula ¢, the collection {x | ¢(x)} is a class.
» {x|x=x}is a class;
» {x|xCy}isaclass.

» Aclass Cisasetif IxVy(y € C <>y € x).



CZF

» The class of total relations between a and b is denoted by
mv(a, b):

remv(a,b) & rCaxbAVx € ady € b((x,y) € r).
» The class of functions from a to b is denoted by b®:

feb®s femv(a,b)
NVx € aVy,z € b((x,y) € f AN (x,z) € f =y = z).



CZF

In CZF, we can prove

» Fullness:
VaVbic(c C mv(a, b) AVr € mv(a, b)ds € c(s C r)),

and, as a corollary, we see that b? is a set, that is

» Exponentiation:  VaVb3cVf(f € c <> f € b?).



Set-generated classes

A class X of subsets of a set S is set-generated if there exists a
subset G of X such that

a=|J{BeG|BCa}

for each o € X. We call the set G a generating subset of the class
X.

» The class Pow(S) of opens of the discrete topology on a set
S is not a set in CZF.

» A base {{s} | s € S} of the opens Pow(S) is a set in CZF.

» Note that Pow(S) is a set-generated class with a generating
subset {{s} | s € S}.



Set-generated classes

Proposition
Let X be a class of inhabited subsets of a set S, and let Min(X)
be a class of minimal elements of X, that is,

Min(X) ={xe X |Vy e X(y Cx =y =x)}.

If X is set-generated, then Min(X) is a set.



Implications and theories

Definition
The generalized geometric implications (simply, implications) and
generalized geometric theories (simply, theories) over a set S, and
their rank, are defined simultaneously by

1. s is a implication of rank 0 for each s € §;

2. if o is a finite subset of S and I is a set of theories of rank n,

then Ao — \/yer A U is a implication of rank n + 1;
3. aset T of implications of rank < n is a theory of rank n.



Implications and theories

> VUer/\UE/\@_)VUer/\Uv

> s = Vyer N\U=A{s} = Vyer AU,
» No = Vv =No = Voeu Ao}
» Ao AU=ANo = Vyey AU



Models of theories

For an implication ¢ = Ao — \/ycr A U of positive rank, we
denote the sets o and I' by o, and I'y,, respectively.

Definition
The relation |= between a subset a of S, and implications s (of
rank 0), ¢ (of positive rank) and a theory T over S is defined by
L.afEsifseaq
2. af=ypifo, Caimplies a |= U for some U € Ty;
3. aETifal0foraloeT.

We say that « is a model of a theory T if a |= T. The class of
models of T is denoted by M(T).



Extensions

An extension S' of a set S is a set with an inclusion (i.e., an
injection) ¢ : S — §'.

We can naturally extend the inclusion ¢ to an inclusion 7 from the
implications and the theories over S into the implications and the
theories over S’ of same rank by

its) = us),
(0) = Aeloy) = Vuer, Ai(U),
(T) = {i9)|6¢€ T},

>

>

where s and ¢ are implications of rank 0 and of positive rank,
respectively, and T is a theory.



Extensions

Lemma

Let T be a theory over S, and let S' be an extension of S with an
inclusion v. Then 1= (a/) € M(T) if and only if o/ € M(i(T)) for
each o € Pow(S').



Extensions

Let S’ be an extension of a set S with an inclusion .

» A theory T' over S’ is an extension of a theory T over S if
v L(a!) € M(T) for each o/ € M(T).

» An extension is conservative if for each « € 9M(T) there exists
o € M(T') such that o = 171(a).

Note that the theory 7( T) is a conservative extension of a theory
T.



Rank reduction

Proposition
Each theory of rank n+ 1 (n > 1) has a conservative extension of
rank n.

Proposition

Let T' be a conservative extension of a theory T. If the class
IM(T') of models of the theory T' is set-generated, then the class
9M(T) of models of the theory T is set-generated.



Regular extension axiom

> A set Ais regular if it is transitive, i.e. a C A for each a € A,
and for each a € A and R € mv(a, A) there exists b € A such
that

Vx € ady € b((x,y) € R) AVy € bdx € a((x,y) € R).

» A set Ais union-closed if | Ja € A for each a € A.

uREA: Every set is a subset of a union-closed regular set.



Regular extension axiom

» A regular set A is RRSy-regular if for each A’ C A,
R e mv(A" x A", A") and ag € A, there exists Ay € A such
that ag € Ap C A" and Vx,y € Apdz € Ao(((x,y),z) € R).

RRS,-uREA: Every set is a subset of a union-closed RRS,-regular
set.



Regular extension axiom

DC: If Vx € ady € ayy(x,y) and by € a, then there exists a
function f : N — a such that f(0) = by and

Vn € Ng(f(n), f(n + 1)).

Proposition
uREA + DC = RRS>-uREA.

Theorem
Assume RRSp-uREA. Then the class 9(T) of models of a theory

T of rank 1 is set-generated.



Relativized dependent choice

Let ¢ and ¢ be arbitrary formulas.

RDC: If Vx[o(x) = Jy(o(y) A(x,y))] and ¢(bo), then there
exists a function f with domain N such that f(0) = by and

vn € N[§(f(n)) A¢p(f(n), f(n +1))]-

Note that RDC implies DC.

Theorem
Assume RDC. Then the class M(T) of models of a theory T of

rank 1 is set-generated.



Main result

Theorem
Assume RRS;-uREA or RDC. Then the class O(T) of models of
a theory T of rank n is set-generated.



Algebra

Let (R,+,-,—,0,1) be a commutative ring.
> A subset / of R is an ideal | if

1. 0€,
2. x,ye€l=>x—-yel,
3. xeRyel=>x-yel

Proposition
Assume RRS;-uREA or RDC. Then the class of ideals is
set-generated.

Proof.

Note that the class of ideals is the class of models of the theory:

{0 U{A{x. ¥y} = x—y|xy € R}
U {y—=x-yl|lxy€R}



Algebra

» An ideal | is nontrivial if there is x € [ with —(x = 0).

Proposition
Assume RRS>-uREA or RDC. Then the class of minimal
nontrivial ideals is a set.

Proof.
Note that the class of nontrivial ideals is the class of models of the
theory:

{0} U {Vxe{xeRh(x:O)} X}
U {/\{X,y}—)X—y|X,y€ R}
U {y—=x-ylxy€eR}



Neighbourhood space

» A neighbourhood space is a pair (X, 7) consisting of a set X
and a subset 7 of Pow(X) such that

1. Vx € XaU € 7(x € V),
2. VxeXVU,VerlxeUNV—s3aWer(xeW CUNnV).

We say that 7 is an open base on X.

> A subset A of X is open if for each x € A there exists U € 7
such that x € U C A.

» A function f between neighbourhoos spaces (X, 7) and (Y, 0)
is continuous if f~1(V) is open for each V € 0.



Neighbourhood space

Let X be a set.
Let {(Xi, i) | i € I} be a family of neighbourhood spaces, and let
{fi: Xi = X | i € I} be a family of functions.

» An open base 7 on X is final for the family {f; | i € I} if for
any neighbourhood space (Y, o) and any function g : X — Y,

g is continuous < g o f; : Xj = Y is continuous for each j € /.



Neighbourhood space

Proposition
Assume RRS>;-uREA or RDC. Then the class

C = {U € Pow(X) | £(U) is open for each i € I}

is set-generated, and the generating set is a final open base on X.

Proof.
Note that C is the class of models of the theory:

{f;(X) - VXEVET,' /\er f;(.y) | X € Xi7 i € I}



Formal topology

» A formal topology (S, <, <) is a preordered set (S, <)
equipped with a subclass << C S x Pow(S) such that

l.aeU=axU,
2.aqUandVce U(caV)=axV,
3.a<Uanda<gV=aglUn]V,
4. a< b= a<x{b},

where | U={a€ S|3be U(a< b)}.

» A formal topology (S, <, <) is set-presented if there exists a
family of subsets C(a, i) of S, where i € /(a) and a € S, such
that

a< U<« 3iel(a)C(a,i) CU).



Formal topology

Let (S, <, <) be a formal topology.

» A formal point of a formal topology (S, <, <) is a subset
« C S such that

1. « is inhabited,
2.abca={anlb)ja
3.acaandaqU=U{a.

If (S, <, <) is set-presented, then the condition 3 is equivalent to

Viel(a)lae a= C(a,i) () al



Formal topology

Proposition
Assume RRS,;-uREA or RDC. Then the class of formal points of
a set-presented formal topology is set-generated.

Proof.
Note that the class of formal points is the class of models of the
theory:

{vaES a}
U {/\{av b} - VcEJ,aﬂJ,b ¢ | a, be S}
U {a= Vpeciblicl(a)ae St



Formal topology

Corollary

Assume RRS;-uREA or RDC. Then the class of minimal formal
points of a set-presented formal topology is a set.

A formal topology (S, <, <) is Ty if « C 8 = o = (3 for each
formal points « and f.

Corollary

Assume RRS>-uREA or RDC. Then the class of formal points of
a set-presented Ty formal topology is a set.



Formal topology

» A continuous morphism from a formal topology (S, <, <) into

a formal topology (S', <, <') is a relation r C S x S’ such
that

l.arband b<' V= a<ri(V),

2. a<r (8",
3.arbandarc=a<r (| bnlc).
4. a<r*b=arb,

If (S,<,<) and (§',<',<') are set-presented, then the conditions
1, 2 and 3 are respectively equivalent to

» Vjel'(b)lar b= 3ie€ l(a)Va € C(a,i)Ib" € C'(b,j)(d r
)],

» diel(a)Va' € C(a,i)Ibe S'(a' rb),

» arband arc=3iel(a)Va € C(a,i)Ad €] bn | c(d' r d).



Formal topology

Proposition

Assume RRS>;-uREA or RDC. Then the class of continuous
morphisms between set-presented formal topologies is
set-generated.



Formal topology

Proof.
Note that the class R of relations satisfying the condition 1, 2 and
3 is the class of models of the theory:

{(a,6) = Vici(a) Narcca,i) Ve vy(@s b')
|jel'(b),ac S, beS'}
U {Viel(a) /\a’eC(a,i) VbES’(ala b) | ac 5}
U {/\{(aa b)a (aa C)} - Viel(a) /\a’eC(a,i) Vdeibﬁic(ala d)
|ae S,b,ceS'},

and the class of continuous morphisms is given by

{{(a,b) |a<ir7'b} | r € R}.



Basic pair (joint work with Tatsuji Kawai)

» A basic pair is a triple (X,IF, S) of sets X and S and a
relation FC X x S.

» A relation pair between basic pairs (X, I, S) and (X', IH,S’)
is a pair (r,s) of relations with r C X x X" and s C S x §'
such that

IH or = so IF.

» Two relation pairs (r1,s1) and (r2, sp) between pasic pairs
(X,IF,S) and (X', I, S") are equivalent, denoted by
(I’l,Sl) ~ (r2,52), if

H‘, on :H‘, onr,

or equivalently
s10 lF=spo I .



Basic pair (joint work with Tatsuji Kawai)

Theorem
Assume RRS>-uREA or RDC. Then coequalizers exist in the
category of basic pairs.



Basic pair (joint work with Tatsuji Kawai)

Proof.
Let (r1,s1) and (2, s2) be relation pair between basic pairs
(X,IF,S) and (X',IF',S"). Then the class

Q = {U € Pow(S") | (s10 IF)"}(U) = (s20 IF)"H(U)}
is the class of the models of the theory:

{a = Axesionr)-1(a) Vie(siolr)x) P 1 @ € S’}
U {2 = Axeisrolr)-1(a) Voe(siolyx £ 12 € S’}

Let G be a generating set of Q. Then (X', I, G) with a relation
pair (idxs, €) is a coequalizer for (r1,s1) and (r2, s2).



