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Ideal membership Problem over the integers

(Kronecker’s Problem):

Given: An ideal I = 〈f1, . . . , fs〉 ⊆ Z[X1, . . . , Xn]

and f ∈ Z[X1, . . . , Xn].

Decide: Whether f ∈ I. In case of positive

answer, give h1, . . . , hs ∈ Z[X1, . . . , Xn] such that

f = h1f1 + · · ·+ hsfs.

Computing the syzygies module over Z:

Given: f1, . . . , fs ∈ Z[X1, . . . , Xn].

Compute a finite generating set for:

Syz(f1, . . . , fs) := {(h1, . . . , hs) ∈ Z[X1, . . . , Xn]s |

h1f1 + · · ·+ hsfs = 0}.
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Let R be a Dedekind domain R with field of

fractions F, and f, f1, . . . , fs ∈ R[X1, . . . , Xn].

A necessary condition so that f ∈ 〈f1, . . . , fs〉 in

R[X1, . . . , Xn] is: f ∈ 〈f1, . . . , fs〉 in F[X1, . . . , Xn].

Suppose that this condition is fulfilled, that is

there exists d ∈ R \ {0} such that

d f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] (0).

Since the basic ring R is a Dedekind domain, we

can write

〈d〉 =
∏̀

i=1

p
ni
i ,

where the pi are nonzero distinct prime ideals of

R.
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Other necessary conditions so that f ∈
〈f1, . . . , fs〉 in R[X1, . . . , Xn] is: f ∈ 〈f1, . . . , fs〉
in RpiR[X1, . . . , Xn] for each 1 ≤ i ≤ `. Here the

polynomial ring is over the discrete valuation do-

main Rpi. Write:

di f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] for some di ∈ R\pi.

Since 1 ∈ 〈d, d1, . . . , d`〉, we can glue all the equal-

ities above and obtain that f ∈ 〈f1, . . . , fs〉 in

R[X1, . . . , Xn]. Thus, the necessary conditions

are sufficient and it suffices to treat the prob-

lem in case the basic ring is a valuation ring.
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Definitions 1. Let R be a ring, f =
∑

α aαXα

a nonzero polynomial in R[X1, . . . , Xn], E a non

empty subset of R[X1, . . . , Xn], and > a (global)

monomial order.

(i) The Xα (resp. the aαXα) are called the

monomials (resp. the terms) of f .

(ii) The multidegree of f is mdeg(f) := max{α ∈
Nn : aα 6= 0}.

(iii) The leading coefficient of f is LC(f) :=

amdeg(f) ∈ R.

(iv) The leading monomial of f is LM(f) :=

Xmdeg(f).

(v) The leading term of f is LT(f) :=

LC(f)LM(f).

(vi) LT(E) := {LT(g), g ∈ E}.

(vii) 〈LT(E)〉 := 〈LT(g), g ∈ E〉.
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Definitions 2. Let R be a V is coherent

valuation ring, f, g ∈ R[X1, . . . , Xn] \ {0}, I =

〈f1, . . . , fs〉 a nonzero finitely generated ideal of

R[X1, . . . , Xn], and > a monomial order.

(i) If mdeg(f) = α and mdeg(g) = β then let

γ = (γ1, . . . , γn), where γi = max(αi, βi) for each

i.

The S-polynomial of f and g is the combination:

S(f, g) = Xγ

LM(f)f −
LC(f)
LC(g)

Xγ

LM(g)g if LC(g)

divides LC(f).

S(f, g) = LC(g)
LC(f)

Xγ

LM(f)f − Xγ

LM(g)g if LC(f)

divides LC(g) and LC(g) does not divide

LC(f).

(ii) S(f, f) := d f , where d is a generator of the

annihilator of LC(f) (it is defined up to a unit).

(iii) G = {f1, . . . , fs} is said to be a Gröbner basis

for I if 〈LT(I)〉 = 〈LT(f1), . . . ,LT(fs)〉.
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Theorem 2. Let R be a coherent valuation

ring, I = 〈g1, . . . , gs〉 an ideal of R[X1, . . . , Xn],

and fix a monomial order >. Then, G =

{g1, . . . , gs} is a Gröbner basis for I if and only

if for all pairs 1 ≤ i ≤ j ≤ s, the remainder on

division of S(gi, gj) by G is zero.

Buchberger’s Algorithm for Coherent valu-

ation rings

Input: g1, . . . , gs ∈ V[X1, . . . , Xn], V a valuation

ring, > a monomial order

Output: a Gröbner basis G for 〈g1, . . . , gs〉 with

{g1, . . . , gs} ⊆ G

G := {g1, . . . , gs} REPEAT

G′ := G

For each pair f, g in G′ DO

S := S(f, g)G′

If S 6= 0 THEN G := G′ ∪ {S}
UNTIL G = G′

7



Example: Let V[X] = (Z/16Z)[X], and con-

sider the ideal I = 〈f1〉, where f1 = 2+4X+8X2.

S(f1, f1) = 2f1 = 4 + 8X =: f2,

S(f1, f2) = 2 =: f3,

S(f2, f2) = 2f2 = 8
f3−→ 0, S(f3, f3) = 0,

f2
f3−→ 0.

Thus, G = {2} is a Gröbner basis for I in V[X].
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Question:

Does the generalized version of Buchberger’s Al-

gorithm for coherent valuation rings always ter-

minate after a finite number of steps ?

Answer: NO

Of course if the base ring V is noetherian, it

terminates.
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An example

Let V be a valuation domain with valuation v

and a non archimedian valuation group G.

∃ a, b ∈ V such that v(a) > 0, and ∀ n ∈
N∗, v(b) > n v(a).

I = 〈g1 = aX + 1, g2 = b〉 in V[X]

Buchberger’s Algorithm for valuation rings does

not terminate: ⇒ b
a ⇒ b

a2 ⇒ · · ·

We can prove that LT(I) is not finitely gener-

ated.
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The Gröbner ring Conjecture.

Let V be a valuation domain with corresponding

valuation group G, n ∈ N∗, and fix a monomial

order > in V[X1, . . . , Xn]. Then the following

assertions are equivalent:

(i) It is always possible to compute a Gröbner

basis for each finitely generated nonzero ideal

of V[X1, . . . , Xn] by the generalized version of

Buchberger’s Algorithm for valuation domains

in a finite number of steps.

(ii) G is archimedian (⇔ dimV ≤ 1).

(iii) For each finitely generated ideal I of

V[X1, . . . , Xn], the ideal 〈LT(I)〉 is finitely gen-

erated.
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Solutions:

H. Lombardi, P. Schuster, I. Yengui, The

Gröbner ring conjecture in one variable, Math.

Zeitschrift (2011).

I. Yengui, A solution to the Gröbner ring con-

jecture. Preprint 2011.
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The method of seeing what happens locally

raised the following question:

How to avoid the expensive problem of factoriz-

ing a principal ideal in a Dedekind domain into

a finite product of prime ideals ?

The use of gluing “local realizability” appeals

to the use of dynamical methods and more pre-

cisely, as will be explained later in this course,

the use of a new notion of Gröbner basis, namely

the notion of “dynamical Gröbner basis”. A key

fact is that for any two nonzero elements a and

b in a principal domain R, writing a = (a ∧ b)a′,
b = (a ∧ b)b′, with a′ ∧ b′ = 1, then a divides b

in Ra′ and b divides a in Rb′, where the multi-

plicative subsets M(a′) and M(b′) are comax-

imal. This precious fact will enable us to go

back from the leaves to the root of the evalua-

tion tree produced by our dynamical method. In

other words, this will make the gluing of “local

realizability” possible.
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Buchberger’s Algorithm over coherent

arithmetical rings

It works like Buchberger’s Algorithm for coher-

ent valuation rings. The only difference is when

it has to handle two incomparable (under divi-

sion) elements a, b in R. In this situation, one

should first compute u, v, w ∈ R such that

{
ub = va
wb = (1− u)a.

Now, one opens two branches: the computa-

tions are pursued in Ru and R1−uR.

At the end of the computation, one obtains a

binary tree whose leaves corresponds to comax-

imal localizations S−1
i R (1 ≤ i ≤ s) of the base

ring R. If we denote by Gi the Gröbner basis

obtained at the ith leaf,

G := {(G1, S1), . . . , (Gs, Ss)}

is called a dynamical Gröbner basis.
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An example

1) Suppose that we want to con-

struct a dynamical Gröbner basis for

I = 〈f1 = 3XY + 1, f2 = (4 + 2θ)Y + 9〉 in

Z[θ][X, Y ] where θ =
√−5.

Let fix the lexicographic order as monomial or-

der with X > Y .

Since x1 := 3 and x2 := 4+2θ are incomparable

under division, one has to compute u, v, w ∈ Z[θ]
such that:

{
ux2 = vx1
wx2 = (1− u)x1.
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Since Z[θ] has a Z-basis, finding u, v, w amounts

to solve an under-determined linear system over

the integers. The resolution can be done by any

computer algebra system. One solution to this

system is u = 5 + 2θ, v = 6θ, w = −3. Thus,

one has to open two branches:

Z[θ]
↙ ↘

Z[θ]4+2θ Z[θ]5+2θ

16



At the end of computations, the dynamical eval-

uation of the problem of constructing a Gröbner

basis for I produces the following evaluation

tree:

Z[θ]
↙ ↘

Z[θ]4+2θ Z[θ]5+2θ

↙↘
Z[θ](5+2θ).3 Z[θ](5+2θ).2

The obtained dynamical Gröbner basis of I is

G = {(M(5 + 2θ), G1), (M(4 + 2θ), G2)}.

With G1 = {3XY +1, −3X + 2θ
5+2θ, 2θ

5+2θY +1},

and G2 = {3XY + 1, − 27
4+2θX + 1, Y + 9

4+2θ}
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2) Computing the syzygy module:

Denoting by F = [f1 f2], we will compute a

generating set for Syz(F ).

Over Z[θ](5+2θ).3:

Syz(F ) = 〈
(

3X2Y + 4+2θ
3 X2Y 2

−1
3 X2Y −X3Y 2

)
,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉.

Over Z[θ](5+2θ).2:

Syz(F ) = 〈



9X2Y (5+2θ+2θY )
2θ

−(5+2θ)(3X3Y 2+X2Y )
2θ


 ,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉.
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Over Z[θ](4+2θ):

Syz(F ) = 〈

 − 9

4+2θ − Y
1

4+2θ + 3XY
4+2θ


〉.

Finally, over Z[θ], we have

Syz(F ) = 〈
(
−(4 + 2θ)Y − 9
3XY + 1

)
,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉

= 〈
(
−(4 + 2θ)Y − 9
3XY + 1

)
〉.
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On Polly Cracker over Valuation Rings

(in collaboration with Jean-Marie Preira &

Djiby Sow (Dakar)) :

Polly Cracker system is a public key cryptosys-

tem in which the private key is a commutative

Gröbner basis of a multivariate polynomials ideal

over a finite field. Many attacks show that this

system based on Gröbner bases over a field is

not secure.

To design a secure Polly Cracker system, we pro-

pose to implement Polly Cracker over rings with

enough zero divisors (provided that a concept of

Gröbner basis exists), because the analysis of all

known attacks like for example the linear algebra

attack, shows that they use in some step, the

solution of a linear system in the underlying field.

Hence to avoid such attacks on Polly Cracker,

it may be interresting to work over a ring for

which linear systems are difficult to solve.

In order to obtain a such difficult linear sys-

tem to solve, we propose a new version of Polly

Cracker system that relies on Gröbner bases over

a Dedekind ring with many zero-divisors.
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Proposition: If R is a local ring with n ele-

ments, denoting by P(R) (resp., P(R×R)) the

probability that an element in R (resp., in R×R)

is a zero-divisor (including zero), we have:

P(R) ≤
1

2
& P(R×R) = 2P(R) − P2

(R).

In Particular

P(R) =
1

2
(that is maximal) ⇒ P(R×R) = 1−1

4
= 3/4.

More particularly,

P(Z/pαZ) =
1

p
& P(Z/pαZ×Z/qβZ) =

1

p
+

1

q
− 1

pq
,

P(Z/2αZ) =
1

2
& P(Z/2αZ)×(Z/2αZ) = 3/4.
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Example: Take p = 2 and α = 3. Let

I = 〈f1 = (2,1)X + (1,2)Y + (1,0),

f2 = (1,2)X2 + (1,1)〉 ⊆ (Z/8Z)× (Z/8Z)[X, Y ].

(Z/8Z)× (Z/8Z)
↙ ↘

Z/8Z Z/8Z

I1 := π1(I) = 〈g1 = 2X + Y + 1, g2 = X2 + 1〉,

I2 := π2(I) = 〈h1 = X + 2Y, h2 = 2X2 + 1〉.
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We find G1 = {2X+Y +1, X2+1, 4Y +4, XY +

X − 2, Y 2 + 6Y + 1} as a reduced Gröbner for

I1, and G2 = {1} as a reduced Gröbner for I2
according to >lex.

As a conclusion, a reduced dynamical Gröbner

basis for I in the ring (Z/8Z)× (Z/8Z)[X, Y ] is

G = {({(2,0)X+(1,0)Y +(1,0), (1,0)X2+(1,0),

(4,0)Y + (4,0), (1,0)XY + (1,0)X − (2,0),

(1,0)Y 2+(6,0)Y +(1,0)}, eN), ({(0,1)}, (1−e)N)},

where e = (1,0) and 1− e = (1,0)
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Recall that

Z[t]/〈pα, t2 − t〉
ϕ∼= (Z/pαZ)× (Z/pαZ)

with ϕ(f̄) = (f(0), f(1)) for f ∈ Z[t]

If coded in the ring (Z[t]/〈8, t2 − t〉)[X, Y ], a re-

duced dynamical Gröbner basis for J = ϕ−1(I)

is

G = {({2X +Y +1, X2+1, 4Y +4, XY +X−2,

Y 2 + 6Y + 1}, (1− t)N), ({1}, tN)}.
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Computing the syzygies module over a valu-

ation domain with arbitrary Krull dimension:

1) Lombardi H., Quitté C., Yengui I. Un al-

gorithme pour le calcul des syzygies sur V[X]

dans le cas où V est un domaine de valuation,

Preprint 2010. In this paper we prove a more

general result: the V-saturation of any finitely

generated submodule of V[X]n is finitely gener-

ated.

2) Generalization to many variables: work in

progress in collaboration with Lionel Ducos,

Henri Lombardi and Claude Quitté.
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