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Quantum corrals are two dimensional structures built atom by atom on an atomically clean
metallic surface using a scanning tunneling microscope (STM). These two dimensional structures
“corral” electrons in the surface states of noble metals, leading to standing wave patterns in the
electron density inside the quantum corral. We review the physics of quantum corrals and relate
the signal of the STM to the scattering properties of substrate electrons from atomic impurities
supported on the surface. The theory includes the effects of incoherent surface state electron
scattering at the impurities and quantitively describes nearly all of the current STM data on
quantum corrals, including the recent quantum mirage experiments with Kondo effect. We discuss
the physics underlying the recent mirage experiments and review some of the outstanding questions
regarding the Kondo effect from impurities in nanoscale structures on metallic surfaces. We also
summarize recent work on variations of “quantum” corrals: optical corrals and acoustical corrals.
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I. INTRODUCTION

Quantum corrals are the beautiful result of a mar-
riage between technology and basic science. They are
built atom by atom (using approximately 30-80 atoms)
on atomically smooth metallic surfaces using a scanning
tunneling microscope (STM)1. Once the corrals are built,
the STM2 can be used to study these nanometer scale
structures with atomic resolution in space and better
than meV resolution in energy. The data of the STM
can be rendered in false color to produce breathtaking
images3 that reveal standing wave patterns of coherent
electrons inside the corrals.

The history of quantum corrals begins with the pio-
neering work of Eigler and Schweizer (1990) who were
the first to demonstrate that the STM could be used to
controllably move atoms from place to place on the sur-
face of a substrate. Not long afterwards Crommie et al.

(1993a) built the first quantum corrals from iron atoms
on the Cu(111) surface and imaged standing wave pat-
terns inside them. In the early experiments it was
thought that “stadium” shaped corrals could be used as
a laboratory to study “quantum chaos” (Crommie et al.,
1995, 1996; Heller et al., 1994, 1995) but the walls proved
too leaky (and the states of the corrals too low in en-
ergy) for the electrons to bounce around the (unstable)
periodic orbits long enough to detect any “scarring” ef-
fects (Heller, 1984). A very intriguing recent STM cor-
ral experiment was done by Manoharan et al. (2000) who

1 The developers of the STM, Gerd Binnig and Heinrich Rohrer,
were awarded the Nobel Prize for Physics in 1986.

2 For a more detailed discussion of the STM see Chen (1993).
3 For a stunning demonstration of the sorts of im-

ages that can be produced with STM data see:
http://www.almaden.ibm.com/vis/stm/catalogue.html.

http://arXiv.org/abs/cond-mat/0211607v2
mailto:fiete@physics.harvard.edu
mailto:heller@physics.harvard.edu
http://www.almaden.ibm.com/vis/stm/catalogue.html
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combined the physics of quantum corrals with the Kondo
effect to achieve a beautiful “mirage” inside the corral of
the spatially localized spectroscopic response of a Kondo
impurity where there was in fact no Kondo impurity. The
mirage experiment achieves this by taking advantage of
both the locally modified electron density in the corral4

and the scattering properties of a Kondo impurity.

In this Colloquium we review the scattering theory of
STM measurements of quantum corrals including the re-
cent mirage experiments with Kondo effect. We demon-
strate the success of the scattering theory in reproduc-
ing every detail of the experiments including the electron
standing wave patterns, the energies and widths of cor-
ral states and all features of the quantum mirage. The
scattering theory we present is based on a single-particle
picture but takes the many-body physics of the Kondo ef-
fect into account phenomenologically in a straightforward
way. At the end of this colloquium we discuss extensions
of the quantum corrals to optical corrals and acoustical
corrals. We begin our discussion with a review of the
important physics of the substrate on which quantum
corrals are built.

II. THE IMPORTANCE OF SURFACE STATES

The beautiful standing wave patterns observed in STM
corral experiments (Crommie et al., 1993a; Heller et al.,
1994; Kliewer et al., 2000b; Manoharan et al., 2000) re-
sult from the presence of Shockley surface states5 on the
metallic substrate. These are the same surface states re-
sponsible for the standing wave patterns observed near a
step edge (Hasegawa and Avouris, 1993). Surface states
are the result of a particular crystallographic cut of the
material, usually a noble metal, which places the Fermi
energy in a band gap for electrons propagating normal
to the surface. The surface states of Cu(111), Au(111)
and Ag(111) are commonly used in STM experiments.
In the direction normal to the surface (and in a range
of angles around the normal), Bloch states are forbid-
den at the Fermi energy. However, solutions to the
Schrödinger equation exist with exponentially decaying
amplitude into both the bulk material and the vacuum.
For such solutions electrons are still free to move in the
plane of the surface and form a type of two dimensional
electron gas (2DEG) there. Often, the surface state band
is only partially filled, giving a low density on the sur-

4 Kliewer et al. (2000b) studied the effect of the corral-modulated
surface state electron density on the spectroscopy of Mn on
Ag(111), which did not display a Kondo effect.

5 For more details see Davison and Steslicka (1996) and for ex-
perimental results for several materials see Kevan and Gaylord
(1987). The surface states themselves are still a very active
area of research with many STM studies being reported in re-
cent years: Bürgi et al. (1999a); Kliewer et al. (2000a); Li et al.

(1998a).

face, and a nearly quadratic dispersion relation with a
constant effective mass.

The scattering theory that we develop for quantum
corrals in Sec. IV is based on these free two dimensional
surface state electrons. We will see that although the
quantum corrals are two dimensional systems in many
respects, there are some important ways in which the
underlying bulk material makes its presence felt. This
is especially true with the quantum mirage experiments
where the bulk electrons play an important role in the
formation of the Kondo resonance (Knorr et al., 2002).

Before we leave our brief discussion of surface states
it is important to give some typical numerical values of
important quantities such as the wavelength of electrons
in the surface states, λ, the effective mass of surface state
electrons, m∗, and density of states of the surface state
electrons, ̺surf . These three quantities are all related
through the dispersion relation

Esurf(k) − EF = E0 +
h̄2k2

2m∗
, (1)

where ̺surf = m∗

πh̄2 (for E > E0) includes both spin up
and spin down electrons. In the case of Cu(111), Au(111)
and Ag(111) the surface state band minimum, E0, is very
close to the Fermi energy. Typical values are fractions
of an eV below the Fermi energy (Kevan and Gaylord,
1987), EF , where EF is measured relative to the bot-
tom of the bulk state bands and is typically 5-10 eV. For
Cu(111), E0 ≈ −450 meV and m∗ = 0.38me with me the
mass of the free electron. The surface state electron den-
sity of Cu(111) is n ≈ 7 × 1013 cm−2 which corresponds
to approximately one surface state electron per 12 Å ×
12 Å square.

There are three important physical consequences of
small E0. The first is that it makes the dispersion re-
lation quadratic and isotropic (in the plane of the sur-
face) to a very good approximation. An isotropic dis-
persion relation is very convenient for the application
of scattering theory because one does not need to know
the orientation of the underlying crystal lattice. Sec-
ondly, a small E0 makes the filling of the surface state
band rather low compared to bulk bands, which in turn
makes the typical wavelength of the surface state elec-
trons, λ ≈ λF = 2π

kF
, very large compared the lattice

spacing and the size of atomic impurities on the sur-
face. For Cu(111), λF = 29.5 Å. Since λF is much larger
than the underlying Cu(111) lattice spacing, the stand-
ing wave patterns are easy to separate from atomic scale
charge density variations and since λF is large compared
to the surface adatoms, we can make an s-wave approx-
imation in the scattering theory.6 Thirdly, a small E0

6 The scattering theory we describe below is a two dimensional
theory. The dynamics in the direction normal to the surface is
assumed to be energetically inaccessible, much like the case of a
2 dimensional electron gas (2DEG) that forms at the interface of
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FIG. 1 Geometry of the scanning tunneling microscope mea-
surement and energy diagram. (a) Schematic of the STM tip
above the substrate. The STM tip states are labeled by ψt and
the eigenstates of the substrate are labeled by ψν . The cur-
rent is exponentially sensitive to the tip-surface distance, d.
(b) Energy diagram of the tunneling process. Electrons must
tunnel across a vacuum barrier of thickness d from occupied
states of the tip to unoccupied states of the surface (ener-
gies Eν

F < ǫ < Et

F ). The total current, Eq. (5), is given by
the sum of all such processes, while the conductance, Eq. (6),
just measures the tunneling rate for electrons at a particular
energy in this window.

makes the electron filling small so the density of surface
states is small compared to bulk states at the same en-
ergy. This has implications for the microscopic details
of the Kondo effect from a magnetic impurity like Co
on the Cu(111) surface. We will return to this point in
Sec. VIII. We now turn to the STM measurement.

GaAs/AlGaAs. Electron scattering out of the plane of the sur-
face (into the bulk) is taken into account in a phenomenological
way in the scattering theory by adding an imaginary component
to the phase shift. This is discussed in detail in Sec. IV.

III. STM THEORY: TOPOGRAPHIC IMAGES AND

SPECTROSCOPIC MEASUREMENT

In this section we briefly review the physics of the
tunneling measurement. The basic tunneling geometry
and energy diagram is shown in Fig. 1. The STM tip
usually sits a few Å above the surface. The STM data
can be taken in two ways: (i) A feedback loop can be
used to control the height of the tip above the surface so
that the total tunneling current is kept constant as the
tip is scanned over the surface. This is called a “topo-
graphic” image and, as we will soon see, at each point
it is a measure of the energy-integrated local density of
surface states. (ii) In the second type of measurement
the feedback loop is opened so that the tip height is kept
roughly constant with respect to the surface and the volt-
age is swept to measure the local spectroscopy at the tip
position.

Tunneling measurements of quantum corrals are typi-
cally done at small voltage biases, V < 0.3 Volts, and low
temperatures, T < 70 K. In such a situation perturbation
theory can be applied to compute the tunneling current
in terms of the unperturbed tip states and surface states.
According to Fermi’s Golden Rule, the current at posi-
tion r and STM bias voltage V is (Bracher et al., 1997;
Tersoff and Hamann, 1985)

I(r) =
2πe

h̄

∑

t,ν

|Mt,ν(r)|2f(ǫt) (1 − f(ǫν)) δ(ǫt+eV−ǫν) ,

(2)
where e is the charge of the electron, t (ν) labels the tip
(surface) states, f is the Fermi function and Mt,ν(r) is
the matrix element from the tip state t to the surface
state ν at position r. The expression, Eq. (2), has a
simple physical interpretation. It says that the tunnel-
ing current is proportional to the square of the matrix
element connecting the various tip states to the various
surface states times a factor which gives the probability
of an occupied tip state and an empty surface state. The
delta function enforces energy conservation. Finally all
tip states and surface states are summed over. When
the tip is treated as a point source, |Mt,ν(r)|2 ∝ |ψν(r)|2

(Tersoff and Hamann, 1985), where ψν(r) are the eigen-
functions of the surface. Assuming also that the temper-
ature is low enough to replace the Fermi functions by step
functions, using the relation

∫

dωδ(ǫt+eV −ω)δ(ω−ǫν) =
δ(ǫt + eV − ǫν) and converting the sum over tip states to
an integral, we obtain

I(r) ∝

∫ eV

0

̺t(ǫ)LDOS(r, ǫ)dǫ , (3)

where ̺t(ǫ) is the density of states of the tip and the local
density of states (LDOS) is given by

LDOS(r, ǫ) =
∑

ν

|ψν(r)|2δ(ǫ− Eν) . (4)

Usually the density of states of the tip is assumed con-
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stant so it can be pulled out of the integral,

I(r) ∝

∫ eV

0

LDOS(r, ǫ)dǫ , (5)

and

dI

dV
(r, ǫ) ∝ LDOS(r, ǫ) . (6)

The last three equations above, Eqs. (4), (5), and (6),
are the most important formulas for the interpretation
of the quantum corral experiments. The central quantity
to calculate is Eq. (4) as the current, Eq. (5), and the
conductance, Eq. (6), depend on it. The LDOS is ex-
pressed in terms of the eigenstates, labeled by ν, of the
surface. It is through the calculation of these eigenstates
from scattering theory that Eq. (4) provides the bridge
between scattering theory and the tunneling measure-
ment of the STM. We will develop this connection fully
in Sec. IV. From Eq. (5) and Eq. (6) it is evident that the
STM signal is related to the square of the surface state
wavefunctions at a given location. If the wavefunction
has large (small) amplitude at a particular location the
current and conductance will tend to be larger (smaller)
there.

A topographic measurement corresponds to Eq. (5) in
which a feedback loop is used to modulate the tip height
to keep the current constant. This is usually the type
of measurement used to produce data like the standing
wave patterns in quantum corrals. Typical bias voltages
are on the order of 10 meV so that the current at position
r is an integral over approximately 10 meV of energy. In
most experiments, the density of states at any given po-
sition r does not vary much over 10 meV. However, in the
mirage experiments the Kondo effect actually produces
strong variations in the local density of states over 10
meV (Manoharan et al., 2000).

In the spectroscopic measurement the STM tip-surface
distance is held fixed by turning off the feedback loop.
The voltage is swept (at a given position) to reveal the
energy dependence of the LDOS, Eq. (6). This is the type
of measurement that reveals the energies and widths of
resonances in quantum corrals which appear as peaks in
a plot of dI/dV vs. V. The Kondo resonance at a Kondo
impurity also has a strong signature in dI/dV (Li et al.,
1998b; Madhavan et al., 1998; Manoharan et al., 2000).
The quantum mirage is most easily probed in this
way (Fiete et al., 2001; Manoharan et al., 2000).

IV. SCATTERING THEORY FOR SURFACE STATE

ELECTRON DENSITY

In this section we develop a scattering theory for the
electron density in quantum corrals. In Sec. II we em-
phasized the importance of the surfaces states on the
(111) surfaces of noble metals and gave the important
properties for the development of scattering theory: two
dimensional electron states on the surface, isotropic and

parabolic dispersion of the energy and long electron wave-
length compared to the lattice spacing and the size of
the adatoms. We now describe how the quantities of
the STM measurement given in Sec. III, namely Eq. (4),
are obtained from scattering theory. The physical pic-
ture to have in mind is of a circularly symmetric electron
amplitude emanating from the STM tip into the surface
states of the substrate.7 This amplitude spreads radially
outward from the tip until it encounters a defect (such
as an impurity) on the surface or a step edge, at which
time it scatters. Part of this amplitude is reflected back
to the STM tip8 (possibly scattering several more times
along the way from different impurities) and interferes
with the outgoing amplitude leading to fluctuations in
the LDOS, and hence the tunneling current, as a func-
tion of position. Note that the fluctuations are a result
of the coherent part of the back-scattered amplitude.

Let the Hamiltonian of an electron on the surface be
Ĥ = Ĥ0 + V̂ , where Ĥ0 is the Hamiltonian describing
free propagation in the surface states and V̂ accounts
for the spatially local and separate potential perturba-
tions due to the impurities on the surface. The ampli-
tude to propagate from point r to point r

′ in time t on
the surface is given by the retarded Green’s function,

Gret(r′, r, t) = −iθ(t)〈r′|e−iĤt/h̄|r〉, where θ(t) is the step

function. The eigenstates of Ĥ are the scattering eigen-
states of the particle in the presence of the potential V̂ .
Inserting a complete set of eigenstates,

Gret(r′, r, t) = −iθ(t)
∑

ν

〈r′|e−iEνt/h̄|ψν〉〈ψν |r〉 , (7)

and taking the Fourier transform of this,

Gret(r′, r, ǫ) =
∑

ν

ψ∗
ν(r)ψν(r′)

ǫ− Eν + iδ
. (8)

Here ψν(r) are the eigenstates of the Hamiltonian Ĥ and
δ is an infinitesimal positive quantity. For the STM mea-
surements, we are interested in the part of the amplitude
that back scatters to the tip. Thus, we are interested in
r
′ = r. The imaginary part of the diagonal amplitude is

proportional to the local density of states,

LDOS(r, ǫ) ≡ −
1

π
Im
[

Gret(r, r, ǫ)
]

=
∑

ν

|ψν(r)|2δ(ǫ−Eν) .

(9)
What we have established is a relationship between the

full Green’s function, Eq. (8), the scattering eigenstates

7 By measuring the change in the differential conductance when
the voltage is swept from below surface state band energies to
above the lowest surface state band energy, the relative fraction
of flux into the surface states and bulk states can be determined.
It is typically around 50% (Bürgi et al., 1998; Knorr et al., 2002).

8 The exponential decay of the surface states into the vacuum can
affect the details of the topographic measurements due to the
feedback loop (Kliewer et al., 2001).
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of the Hamiltonian Ĥ, ψν(r), and the local density of
states. What remains is to develop a method for calcu-
lating the Green’s function, Eq. (8).

We first consider the case where V̂ represents a single
scatterer. Dyson’s equation can be written

Ĝret = Ĝret
0 + Ĝret

0 V̂ Ĝret , (10)

where Ĝret is the full retarded Green’s function and
Ĝret

0 is the free retarded Green’s function. When V̂=0,

Ĝret = Ĝret
0 . The Ĝret on the right hand side of Eq. (10)

can be formally eliminated by iterating the equation. In
operator notation,

Ĝret = Ĝret
0 + Ĝret

0 V̂ Ĝret
0 + Ĝret

0 V̂ Ĝret
0 V̂ Ĝret

0 + · · ·(11)

= Ĝret
0 + Ĝret

0 (V̂ + V̂ Ĝret
0 V̂ + · · ·)Ĝret

0 .

The terms in the series have the physical interpretation
of a particle that (i) does not scatter at all from the po-
tential, (ii) scatters once and leaves, (iii) scatters once,
propagates, scatters again and then leaves, (iv...) and

so on to infinite order. Truncation of the series at V̂ ,
for example, is just the first Born approximation. The
terms within parentheses can be grouped into into a sin-
gle object called the t-matrix. The t-matrix is defined
by

T̂ = V̂ + V̂ Ĝret
0 V̂ + · · · . (12)

When the spatial extent of the scattering potential is
small compared to the wavelength of the incoming parti-
cle, as is the case for adatoms on the Cu(111) surface, the
scattering is s-wave (isotropic) because the wavelength
of the incident particle is too large to “feel” the spatial
structure of the target. In the s-wave approximation,
the t-matrix takes a particularly simple form in position
representation (Rodberg and Thaler, 1967):

Gret(r, r) = Gret
0 (r, r) +
∫ ∫

d2
r
′d2

r
′′Gret

0 (r, r′)

×sδ(r0 − r
′′)δ(r0 − r

′)Gret
0 (r′′, r) ,(13)

where s(k) = 4ih̄2

m∗
(e2iδ(ǫ) − 1), r0 is the position of the

impurity and δ(ǫ) is the energy dependent phase shift
(ǫ(k) is given by Eq. (1)) in the s-wave orbital channel
(which can be computed once V (r) is known or deter-
mined directly from experiment). The integral can then
be done trivially to yield

Gret(r, r) = Gret
0 (r, r) + sGret

0 (r, r0)Gret
0 (r0, r). (14)

Note that when V (r) goes to zero, δ(ǫ) goes to zero
and one obtains Gret(r, r) = Gret

0 (r, r). That is, the full
Green’s function reduces to the free Green’s function.

The extension to several scatterers is straightforward.
The schematic situation is shown in Fig. 2. The new

FIG. 2 Schematic of the scattering geometry of multiple scat-
tering theory. The scattering centers, shown as little beads,
are adatoms on the surface of a noble metal such as Cu(111).
In the approximation that the STM tip is point-like, a cir-
cularly symmetric electron amplitude, G0(r

′, r, ǫ), emanates
from the tip into the surface states of the metal and encoun-
ters the impurities on the surface. Since the wavelength of the
electrons in the surface states is much larger than the size of
the scatters, one can treat the scatterers as s-wave scatterers
and ignore all higher orbital channels. Because the scatterers
are far apart compared to their size, we assume that electrons
propagate freely between impurities. i and j label different
impurities.

ingredient in the many scatterer case is an extra self-
consistency condition on the scattered amplitude. Impos-
ing this self-consistency condition is equivalent to calcu-
lating the scattering among all the impurities to infinite
order. This is the heart of multiple scattering theory.
(The t-matrix gives the result of scattering from a single
impurity to infinite order.)

In the presence of N scatterers the t-matrix equation
∑N

i=1 T̂iĜ
ret
i =

∑N
i=1 V̂iĜ

ret (V̂i are non-overlapping scat-

tering potentials, the T̂i are the corresponding t-matricies

for these potentials) generalizes Eq. (13) to

Gret(r, r) = Gret
0 (r, r) +

N
∑

i=1

∫ ∫

d2
r
′d2

r
′′Gret

0 (r, r′)

×siδ(ri − r
′′)δ(ri − r

′)Gret
i (r′′, r)

= Gret
0 (r, r) +

N
∑

i=1

siG
ret
0 (r, ri)G

ret
i (ri, r) ,(15)

where the Gret
i are the self-consistently calculated values
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of the Green’s functions at the locations of the scatterers,

Gret
i (ri, r) = Gret

0 (ri, r) +

N
∑

j 6=i

siG
ret
0 (ri, rj)G

ret
j (rj , r) ,

(16)
and

si(ǫ) =
4ih̄2

m∗
(e2iδi(ǫ) − 1) , (17)

for the ith scatterer. The solution of Eq. (16) is given by
the equation

G = A
−1

G0 , (18)

where A is an N × N matrix with elements Aij =
δij − siG0(ri, rj) containing all the information about
the propagation between the impurities and G0 and G

are N -dimensional column vectors of elements G0i =
G0(ri, r) and Gi = G(ri, r), respectively, containing the
information about propagation from the STM tip to the
impurities and from the impurities to the STM tip.

The STM signal is then calculated from scatter-
ing theory by specifying the s-wave scattering phase
shifts δi(ǫ), the locations {ri} of the N impurities
on the surface and the incident electron amplitude.
Given the dispersion relation, Eq. (1), the free Green’s
function, Gret

0 (r′, r, ǫ), is determined from Eq. (8) in

the case of V̂=0. In two dimensions, the outgoing
Green’s function from a point source is Gret

0 (r′, r, ǫ) =

−im∗

2h̄2 (J0(k|r
′ − r|) + iY0(k|r

′ − r|)) where J0 (Y0) is the
Bessel function of the first (second) kind. The final step is
to fix the energy and then solve the system of equations,
Eq. (15) and Eq. (16) by Eq. (18) at the particular cho-
sen energy. (All three of these equations depend on the
energy and must be re-solved for each new energy.) The
solution is then substituted into Eq. (9), which directly
gives the STM signal through Eqs. (5) and (6).

The theory just developed applies equally well to elec-
trons or holes near the Fermi energy. Although the STM
tip is the source (or sink in the case of positive bias,
i.e., the tip has larger voltage) of electrons (or holes),
we have not included one correction that in principle is
present, namely any residual unscreened potential felt by
an electron near the STM tip. In fact the tip itself can be
thought of as a source of scattering, causing disturbances
to any electron passing under it. However, we have so far
not seen any experimental evidence indicating this cor-
rection is needed at small bias voltages.9

9 At larger biases, there may be some Stark shifting of the states
due to the electric field of the STM tip: There are differences in
the surface state band edge energies for STM and photoemission
experiments.

V. APPLICATION TO QUANTUM CORRALS

The scattering theory of Sec. IV may be directly ap-
plied to quantum corrals. Here we discuss the case of Fe
atoms on Cu(111) (Heller et al., 1994) which do not show
a Kondo effect at 4 K. Our goal is to calculate the stand-
ing wave patterns and corral spectroscopy of the type first
observed by Crommie et al. (1993a). To do so we pull to-
gether the results of Secs. II, III and IV. Since we know
the dispersion relation, Eq. (1), for the Cu(111) surface
as well as the positions of the iron impurities from STM
measurements, all that remains to determine the current
and conductance at a given position is a determination of
the phase shift, δ(ǫ), of the Fe atoms. Once δ(ǫ) is deter-
mined, the LDOS(r, ǫ) is determined everywhere by the
scattering theory except within 7 Å of an adatom, where
there is extra charge density not accounted for in the the-
ory. Electron amplitude from the STM tip is assumed to
emanate in a circularly symmetric fashion into the sur-
face states, so we use the outgoing free Green’s function,
Gret

0 (r′, r, ǫ) = −im∗

2h̄2 (J0(k|r
′ − r|) + iY0(k|r

′ − r|)), as
the incident amplitude.

Early measurements (Crommie et al., 1993b) of single
iron impurities on the surface of Cu(111) pointed to a
phase shift near -80o. However, from Eq. (17), it is clear
the the Green’s function is invariant with respect to a
phase shift of π, so the phase shift could equally well
have been near +100o. When the scattering theory was
applied with a phase shift of +100o to circular corrals
to compute dI/dV, Eq. (6), the widths of the resonances
were far too narrow compared to experiment, indicating
a longer electron confinement than was actually inferred
from the broader, measured linewidths. The important
insight (Heller et al., 1994) was that the resonances could
be broadened if one allows electron amplitude to be ab-
sorbed from the surface states at the Fe impurities. A
phase shift of nearly +100o is quite close to +90o. This
leads to

si(ǫ) =
4ih̄2

m∗
(e2iδi(ǫ) − 1)

δ= π
2−→

4ih̄2

m∗
(−2) . (19)

On the other hand, if the Fe atoms were assumed max-
imally absorbing “black dots” (Heller et al., 1994), δ =
i∞,

si(ǫ) =
4ih̄2

m∗
(e2iδi(ǫ) − 1)

δ=i∞
−→

4ih̄2

m∗
(−1) , (20)

so that the overall scattering amplitude has the same
phase but is reduced by a factor of 2. Thus, the two phase
shifts, δ = π

2 and δ = i∞, are equivalent except that the
“black dot” approximation, δ = i∞, leads to an atten-
uation of the scattered wave and a broadening of corral
resonance widths. When δ = i∞ is used to evaluate the
LDOS(r, ǫ), at the center of a circular quantum corral the
agreement with experiment is excellent. Fig. 3 shows a
direct comparison between theoretical and experimental
dI/dV curves for an 88.7 Å diameter, 60-atom circular
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FIG. 3 The experimental and theoretical voltage dependence
of dI/dV, with the tip of the STM located at the center of
an 88.7 Å diameter, 60-atom circular corral of Fe atoms on
a Cu(111) surface. A smooth background has been removed
from the experimental data.

corral of Fe atoms on a Cu(111) surface. Note that ex-
cept for the first peak10 the agreement with experiment
is excellent. Both the resonance energies and the widths
of the resonances are remarkably alike and scale together
except for the highest energy peak.11 Fig. 4 shows a
comparison between theory and experiment for a “topo-
graphic” image for a cut across the diameter of the same
circular corral. Note again the excellent agreement: Ev-
ery experimental oscillation is quantitatively reproduced
by the scattering theory. Finally, the full standing wave
patterns for both theory and experiment for a “stadium”
shaped quantum corral are shown in Fig. 5.

The Fe adatoms can be located only at the available
triangular lattice sites in the Cu(111) surface. This lat-
tice allows arcs, ellipses, and other shapes to be only
approximated. The locations where one can place atoms
can be seen in Fig. 6, for the case of a 48 atom stadium,
where the smooth boundary is drawn for comparison. It
is important to put in the correct atomic positions in
order to get the best agreement with the experiments.
The corral walls, while acting like smooth (although ab-
sorbing) boundaries for some purposes, still reveal their
roughness and granularity.

10 The first peak has been investigated in more detail by
Crampin and Bryant (1996).

11 The scattering theory can be brought into nearly perfect agree-
ment with even the highest energy peak by allowing for a quartic
correction to the parabolic dispersion, Eq. (1) (Chan, 1997).

FIG. 4 The experimental data and theoretical curves for the
tip height as a function of position across the diameter of a
circlular corral (88.7 Å diameter, 60-atoms) for low bias volt-
ages. Various voltages are given; they are measured relative
to the bottom of the surface state band. The asterisk (*) on
the first and last theory voltage values is to call attention to
the slight shift relative to experiment used to obtain the best
fits.

We now turn to a physical interpretation of the “black
dot” approximation. If electron flux is absorbed at the
Fe atoms where does it go? We believe that much of
the lost surface state amplitude goes into to the bulk.12

This idea has been supported by theoretical studies
of Crampin et al. (1994) and Hormandinger and Pendry
(1994). Shortly after the work of Heller et al. (1994),
Harbury and Porod (1996) developed an elastic scatter-
ing theory of quantum corrals. The elastic theory is
able to qualitatively reproduce the standing wave pat-
terns inside the corrals but does relatively poorly com-
pared to the inelastic scattering theory for dI/dV. (See
Fig. 3 in Harbury and Porod (1996).) The inelastic
scattering theory presented here accounts well (at en-
ergies higher than the first one or two peaks) for the
widths and heights of the resonances in corrals com-
pared to the elastic theory of Harbury and Porod (1996).
However, at lower energies there is disagreement due
to the intrinsic lifetime of the surface states that satu-
rates the linewidths (Crampin and Bryant, 1996). This
effect can be exploited in quantum corrals and near
step edges to study many-body effects in the surface
states (Crampin and Bryant, 1996). We will return to

12 Spin-flip processes at the Fe impurities would also appear as a
loss of coherent amplitude.
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FIG. 5 Local density of electron states (LDOS) near EF for a
76 Fe atom “stadium” of dimensions 141 × 285 Å. Right Hand
Side: Experiment, bias voltage 0.01 V (ǫ=0.45 eV); Left Hand
Side: Theory (ǫ=0.46 eV). The density at the locations of the
Fe adatoms is not accounted for in the theory and appears
black.

FIG. 6 Shown is a grid of the underlying lattice of the
Cu(111) surface. Adatoms cannot sit at exact positions of
an ideal stadium, ellipse or circular shaped corral, but must
sit on the nearest site of the underlying lattice. When the
exact positioning of the adatoms in taken into account in
the theoretical calculations, the agreement with experiment
is enhanced. At one site, 4 dark circles are shown. The
lighter circles represent possible positions for the darker, cen-
tral adatom. Obviously the central position is best for the
geometry given by the solid line shown.

this point in Sec. IX.

It is important to summarize what we have learned
from the application of scattering theory to quantum
corrals thus far: (i) Corrals do confine electrons in sur-
face states, but do so rather poorly (resonance widths
are broad) because the adatoms tend to couple surface
states quite strongly to bulk states. A host of stud-
ies (Bürgi et al., 1998; Crampin et al., 1994; Fiete et al.,
2001; Hormandinger and Pendry, 1994; Knorr et al.,
2002; Schneider et al., 2002) suggest that it is quite
generic for adatoms to strongly couple surface states to

FIG. 7 A theoretical calculation of STM data that could
not be modeled with a “particle-in-the-box” approximation
(because it is “open”) or any type of smooth arc (note the
circular “wavelets” near the impurities).

bulk states. (ii) The standing wave patterns in cor-
rals depend on coherent electron propagation in the
surface states to give interference effects. For tem-
peratures below 70 K, the coherence length of sur-
face state electrons on noble metals is hundreds of
Angstroms (Jeandupeux et al., 1999), while the corrals
typically have maximum dimensions on the order of a
hundred Angstroms thus allowing coherent electron prop-
agation across the corrals. (iii) “Particle-in-a-box” mod-
els (Crommie et al., 1993a) may qualitatively agree with
the observed resonance energies of closed structures, but
they have no predictive power for resonance widths or
standing wave patterns in open structures. For example,
consider the arc in Fig. 7; it shows predicted STM data
with a variety of features that certainly could not be mod-
eled with a box, or even, for some of the features, with
a smooth arc imposing some boundary condition. Scat-
tering theory works equally well for one atom as for any
arbitrary arrangement of any number of atoms (provided
the structure is small enough to allow coherent electron
propagation across it). (iv) The only place the scattering
theory fails to agree with experiment is within 7 Å of an
atom. Here the assumptions of the theory break down
because the extra charge density at the impurity is not
properly accounted for.

One comment is in order on the multiple scattering
theory. As simple as it is to invert a matrix of the di-
mension equaling the total number of atoms to obtain
the Green’s function, it is still perhaps curious to do a
multiple scattering expansion in terms of 0, 1, 2, . . . scat-
tering events. It turns out that this fails for typical con-
figurations, due to the presence of closely spaced pairs,
triplets, etc., of atoms. Even though the Q-factor of the
cavity, as indicated for example by the line widths of the
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dI/dV resonances, is only around 2, suggesting about
two bounces are important before leakage occurs , the
Q-factor and the low order of scattering is an appropri-
ate concept only for walls thought of as smooth scattering
units, with the local multiple internal scattering between
neighboring atoms included to infinite order.

The scattering theory does not have to confine it-
self only to atomic surface impurities. The experi-
ments abound with step edges (Bürgi et al., 1999b, 1998;
Jeandupeux et al., 1999; Morgenstern et al., 2002), for
example, even though one looks for regions as far away
as possible from such defects to build corrals. The step
edges affect the images, although not so much inside
closed corrals, which have enough attenuation at the wall
to prevent those paths which begin inside the corral, get
out, hit an edge, and come back inside from having any
important weight.

VI. THE MIRAGE EXPERIMENT

A recent and interesting variation of the original quan-
tum corral experiments were the “quantum mirage” ex-
periments13 of Manoharan et al. (2000). The quantum
mirage experiments make use of the low temperature
physics associated with a magnetic ion (e.g., Fe, Co, Mn)
in electrical contact with a bulk metal (e.g., Cu, Au, Ag):
the so called Kondo Effect. In the quantum mirage ex-
periments, Manoharan et al. (2000) built an elliptical
corral with magnetic atoms (Co) which exhibit a Kondo
effect at 4 K on Cu(111).

The Kondo effect is the many-body response of the free
electrons in the Fermi sea to the magnetic impurity; It
is intimately related to spin-flip scattering events of free
conduction electrons from the magnetic ion. To under-
stand the problem in detail takes a substantial invest-
ment of time, but fortunately the results of a detailed
analysis relevant to the quantum mirage can be stated
quite simply and succinctly: (i) The spin of the conduc-
tion electrons tend to become anti-correlated (oppositely
aligned) with the spin of the magnetic impurity so that
at low temperatures (when the Kondo effect is present)
the local spin of the magnetic ion is fully or at least par-
tially screened. An important special case is when the
spin of the ion is 1/2. Then, the Kondo effect completely

screens it at sufficiently large distances.14 In the scatter-
ing approach that we are using, this means that spin-flip
scattering is “frozen out” and we can treat the scattering
as purely potential scattering (i.e. we neglect spin-flip
scattering processes). We will discuss in Sec. VII how

13 For a more detailed description of the experiment we recom-
mend that readers consult the original paper: Manoharan et al.

(2000).
14 Larger spins can also be completely screened, but require that

more than 1 orbital channel of the conduction electrons to couple
to them. See Nozieres and Blandin (1980) for a discussion.

this “freezing out” of the spin might be understood. (ii)
The impurity density of states (the density of states of
the atomic d- or f-levels that give rise to the magnetic
moment) develops a narrow resonance near the Fermi en-
ergy that is often termed the “Kondo Resonance”. This
resonance is picked up in the STM measurement and is
the main spectroscopic signature of Kondo atoms.

The narrow Kondo resonance (whose width is re-
lated to the Kondo energy scale, TK ∼ 50 K for Co
on Cu(111)) appears in dI/dV near a Kondo atom.
It had been observed near (within 10 Å) isolated
atoms (Li et al., 1998b; Madhavan et al., 1998) earlier,
but Manoharan et al. (2000) used the modification of
the surface state electron density in an elliptical quan-
tum corrals to produce a spectroscopic “mirage” inside
the corral of a Kondo atom where there was in fact no
Kondo atom (the “source” of the mirage was a Co atom
inside the corral more than 70 Å away).15 In order to
fully understand the mirage experiment, we must first
review some details and essential results of the theory of
the Kondo effect. We will need these results for the ap-
plication of our scattering theory to adatoms which show
a Kondo effect.

VII. ESSENTIALS OF KONDO PHYSICS

A. The Anderson Model

The Kondo effect16 is the name given to the low en-
ergy response of the Fermi sea of a metal to a magnetic
impurity. In the mirage experiments, the magnetic im-
purity (Co) sat on the surface of Cu(111). The canonical
(and simplest) model17 of a local magnetic moment in a
metallic host was given by Anderson (1961),

ĤAnderson =
∑

k,σ

ǫkσn̂kσ +
∑

σ

ǫdn̂dσ + Un̂d↑n̂d↓

+
∑

k,σ

(V ĉ†kσ d̂σ + h.c.) .(21)

The first term represents the energy of the electrons of
the Fermi sea (assumed to be non-interacting), the sec-
ond term represents the energy of a single localized site
(an approximation to the d or f atomic level of an atom),
the third term represents an on-site repulsion if two elec-
trons try to occupy the localized level, and the last term

15 The experimental and theoretical spectroscopic signature is
shown in Fig. 13.

16 For an overview of Kondo effect and a list of references
see Hewson (1997). For a brief survey of the Kondo effect in

mesoscopics see Újsághy et al. (2001) and references therein.
17 The Anderson model applies to a spin S = 1/2 impurity. How-

ever, it can be shown (Újsághy et al., 2000) that impurities of
higher spin can be treated with an effective spin S = 1/2
model. For a discussion of the Kondo effect for spin S > 1/2
see Nozieres and Blandin (1980).
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FIG. 8 Local Moment Regime of the Anderson Model. The
Kondo effect occurs when the impurity level energies are situ-
ated as shown. The spin degenerate singly occupied level has
energy ǫd < EF . The cost for adding the second electron of
opposite spin to the impurity level is ǫd +U > EF . Thus, the
impurity ground state has only one electron on the local level
giving it a net spin.

represents hybridization between the local moment and
the conduction electrons. Here ǫkσ (n̂kσ) is the energy
(number operator) of an electron of the Fermi sea with
wavevector k and spin σ and ǫd (n̂dσ) is the spin degen-
erate energy (number operator, not generally spin degen-
erate) of an electron in the localized d or f-level with spin
σ. Here U represents the charging energy of doubly oc-
cupying the localized level. In the fourth term, V is the
hopping matrix element connecting the electrons of the
Fermi sea to the localized impurity level and vice versa,

and ĉ†kσ (d̂†σ) is the creation operator for an electron in
the state with wavevector k (d or f-level) with spin σ.

In the case V = 0, Eq. (21) can be solved exactly.
The states are just direct products of the local moment
states and the Fermi sea. The energy is just the sum
of the energy of the Fermi sea and the energy of the
electron(s) on the localized level. The energy cost for
having one electron on the localized level is ǫd and the
cost for adding the second is ǫd + U . If one considers a
small nonzero V , the Hamiltonian is no longer exactly
solvable. The singly and doubly occupied states of the
local level will be broadened (by an amount that can be
estimated by Fermi’s Golden Rule, Γ ≈ 2πV 2̺0, where
̺0 is the density of states of the Fermi sea at the Fermi
energy, or more precisely, as the energy ǫd, if the density
of states varies with energy). For the Kondo problem one
particular regime of Eq. (21) is of central importance: the
case where ǫd < EF and ǫd + U > EF . This is shown in
Fig. 8. Anderson (1961) showed that Eq. (21) will lead
to local moment formation at low enough temperatures
when Γ ≈ 2πV 2̺0 ≪ |ǫd|, ǫd + U .

The impurity (d-level) density of states in the An-
derson model in the local moment regime we have just
discussed is shown in Fig. 9. The peak in the density
of states at zero bias is sometimes referred to as the
“Kondo” peak (Hewson, 1997). The Kondo peak always
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FIG. 9 Density of States of the Anderson Impurity Model in
the Kondo Regime.The figure is not an actual calculation but
illustrates the central features of the density of states in the
Kondo regime. Both axes are in arbitrary units, but for a real
system energy units of eV would not be unrealistic. The broad
upper and lower peaks (at energies ǫd and ǫd +U) have width
Γ ≈ 2πV 2̺0. These peaks are due to single-particle energy
levels of the impurity. They are broadened by coupling to the
Fermi sea. The central peak is a many-body resonance some-
times called the “Kondo peak.” It arises from correlations
beyond a mean-field calculation such as Hartree-Fock and its
width is exponentially small in the coupling parameter J̺0,

TK ∼ De
− 1

2J̺0 .

sits near the Fermi energy and corresponds to the for-
mation of the many-body Kondo state. It is this peak
that shows up in the form of a “Fano resonance” in
the dI/dV spectra near (within 10 Å) a Kondo atom on
the surface of a metal (Li et al., 1998b; Madhavan et al.,
1998; Manoharan et al., 2000; Plihal and Gadzuk, 2001;
Schiller and Hershfield, 2000; Újsághy et al., 2000). Al-
though the Kondo resonance is associated with many-
body correlations of the Fermi sea and has no single-
particle level analogous to the two spectral peaks corre-
sponding to the bare levels at ǫd and ǫd + U in Fig. 9, it
still behaves as a single-particle resonance when it is fully
formed at T ≪ TK (Nozieres, 1974; Plihal and Gadzuk,

2001; Újsághy et al., 2000). It is this single-particle
like behavior or “local Fermi liquid theory” (Nozieres,
1974) of the Kondo resonance that allows us to use a
single-particle scattering theory for the mirage experi-
ments. The density of states of Fig. 9 translates into
a strongly energy dependent phase shift for electrons of
the Fermi sea near the Fermi energy (Hewson, 1997).
For a single impurity in a host (or on the surface) the
density of states is (to a good approximation) just the
sum of the two: ̺(ǫ) = ̺0(ǫ) + ̺imp(ǫ). Therefore, the
change in the density of states due to the impurity is
∆̺(ǫ) ≡ ̺(ǫ) − ̺0(ǫ) = ̺imp(ǫ). It can be shown to
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equal (Hewson, 1997)

̺imp(ǫ) =
1

π

∂δ(ǫ)

∂ǫ
. (22)

The resonance at the Fermi energy in Fig. 9, for ̺imp(ǫ),
can be approximated as a Lorentzian of width Γ centered
near the Fermi energy (ǫ0) and leads to a tan−1( ǫ−ǫ0

Γ/2 ) in

the phase shift δ(ǫ) of Eq. (27) when Eq. (22) is inte-
grated over energy. It is highly non-trivial that one can
treat a many-body problem like the Kondo effect phe-
nomenologically with a single-particle theory and a reso-
nant phase shift. It is the single most important reason
for the success of our approach to the quantum mirage.

B. The Kondo Model

The Kondo model is a special limit of the Anderson
model, Eq. (21), valid in the local moment regime shown
in Fig. 8. It was used by J. Kondo (1964) (hence the
name) to explain the minimum in the resistivity (as a
function of temperature) of metals with magnetic impu-
rities. The Kondo model can be derived by second order
perturbation theory in V from the Anderson model.18

The Kondo Hamiltonian (including a purely potential
scattering term that also appears in second order per-
turbation theory) is

ĤKondo =
∑

k,σ

ǫkσn̂kσ + J
∑

k,k′

Ŝ · ĉ†kσ

~τσσ′

2
ĉk′σ′

+K
∑

k,k′,σ

ĉ†kσ ĉk′σ ,(23)

where the first term is the same as in Eq. (21),

J ≈ V 2

(

1

U + ǫd
−

1

ǫd

)

> 0 , (24)

and

K ≈ −
V 2

2

(

1

U + ǫd
+

1

ǫd

)

. (25)

Here Ŝ is the spin operator of the impurity and ~τ are
the Pauli spin matrices. The crucial feature of Eq. (23)
is that it leads to spin-flip scattering events19 through
terms like Sxτx +Syτy = (S+τ− +S−τ+)/2. These terms

18 This result was first derived by (Schrieffer and Wolf, 1966).
19 These spin-flip scattering events can also be looked at from the

point of view of the Anderson model. A spin-flip would occur if,
e.g., the initial electron on the local level were spin up, a second
spin down electron hopped on in the intermediate state and then
finally the original spin up electron hopped off, leaving behind
the spin down electron on the local level.

turn out to be related to the apparent low temperature
divergence of the resistivity (as a function of tempera-
ture) in some metals with a low concentration of mag-
netic impurities (which are able to flip the spins of elec-
trons). Kondo’s explanation of the divergence comes by
looking at the effect of the second term of Eq. (23) in a
second-order perturbative calculation of the t-matrix. It
turns out that because S+S− 6= S−S+ one of the sums
over the intermediate states of the Fermi sea is cut off at
the Fermi surface leading to a logarithmic divergence in
the resistivity (Hewson, 1997; Kondo, 1964).

Besides the features of the Kondo problem we have al-
ready mentioned, one more result is worthy of note. In or-
der to understand the low energy behavior of many phys-
ical systems it is often useful to integrate out the high
energy fluctuations and compensate for this by “renor-
malizing” the parameters of an effective low energy the-
ory. This can be quite complicated in general, but for
the Kondo Hamiltonian a particularly simple version
known as “poor man’s scaling,” introduced by Anderson
(1970), can be used to identify the low energy proper-
ties (Hewson, 1997). The idea is to look again at the
second order contributions to the t-matrix from the sec-
ond term of Eq. (23). The sum over the intermediate
states of the conduction electrons contains electrons that
are at the band edges. Anderson suggested removing a
few states at the band edges and adjusting J so that
the scattering amplitude remains invariant (ignoring the
potential scattering terms). When this is done a set of
“scaling equations” is generated for J which can then be
solved. It turns out that a “scaling invariant” appears
and it is generally denoted by TK and referred to as the
Kondo temperature:

TK = De
− 1

2J̺0 . (26)

The quantity TK is invariant under a rescaling of J in
response to a shrinking of the bandwidth, D. As D → 0,
J → ∞, which from the second term of Eq. (23) im-
plies that the spin-flip processes are “frozen out” in the
low energy theory and the scattering becomes purely po-
tential scattering. As before, ̺0 is the density of states
of the host at the Fermi energy. The Kondo effect, in
this simplest of models, is thus characterized by only
one energy scale, TK . This is the width of the “Kondo
peak” that appears in the low temperature density of
states of the Anderson model in Fig. 9, the width of
the Fano resonance (Kawasaka and et al., 1999; Li et al.,
1998b; Madhavan et al., 1998; Manoharan et al., 2000;
Plihal and Gadzuk, 2001; Schiller and Hershfield, 2000;
Újsághy et al., 2000) and it is also the width of the scat-
tering resonance (Fiete et al., 2001), from Eq. (22), of the
Co atoms (for experimental temperatures lower than TK

when the Kondo resonance is well formed) on the surface
of Cu(111).
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FIG. 10 A sketch from “Wellenlehre” (“Wave Teachings”),
an 1825 book published in Leipzig on wave theory by two of
the three Weber brothers scientists from Saxony, Ernst and
Wilhelm, showing the wave pattern of mercury waves when
small amounts of mercury are dropped in at one focus. Notice
how the other, opposite focus looks identical, indicating that
from the point-of-view of the wave, the two foci are excited
equally.

VIII. THEORY OF QUANTUM MIRAGES

In the fascinating quantum mirage experiment
Manoharan et al. (2000) decided to use the unique scat-
tering properties of an ellipse in an attempt to project
the properties of an atom sitting at one focus of the el-
lipse to the corresponding second (empty) focus of the
ellipse. The ellipse has been recognized for its properties
in the context of waves for a long time. For example, the
remarkable image showing surface waves of mercury in
an elliptical container (Fig. 10), drawn by the two of the
three scientifically inclined Weber brothers in 1825 (in-
cluding Wilhelm Weber, well known to physicists in con-
nection with electromagnetism), clearly shows the special
nature of the ellipse. This experiment almost perfectly
anticipates the Eigler group’s measurements of matter
waves 175 years later, since the image corresponds to
drops of mercury landing at one focus with the other
focus “empty.”

Our theory of the quantum mirage (Fiete et al., 2001)
is based on a fairly straightforward modification of the
scattering theory originally presented by Heller et al.

(1994) (for non-Kondo atoms) to account for the Kondo
effect. As we emphasized at the end of the first subsec-
tion of Sec. VII, for experimental temperatures below TK

we are able to take advantage of Nozieres’ (1974) “local
Fermi liquid” picture to write down a phenomenological
single-particle theory with an energy dependent phase
shift. Our theory of the quantum mirage involves the

following approximations, assumptions and limitations:
(i) The scattering of electrons from the adatoms is deter-
mined by a single parameter, the s-wave phase shift, and
this must be determined from experiment or otherwise.
(ii) The internal degrees of freedom (spin) of the Kondo
adatoms are “frozen out” at the temperature of the ex-
periment (∼ 4K) so we may use the results of Nozieres
(1974) to treat the Kondo atom as a potential scatterer
with a phase shift. (iii) The adatoms are far enough
apart so that we may treat the electron propagation be-
tween them as free and that RKKY interactions are suf-
ficiently weak that the single-impurity Kondo physics is
not altered. (iv) The theory does not include any non-
equilibrium effects and does not treat the charge density
within 7 Å of an atom correctly.

To make a direct comparison with experiment, we must
obtain the phase shift of the Kondo adatoms. We do
not have an ab initio calculation of the phase shift of a
single Co adatom. Rather, we fit the resonant form of
the phase shift, including inelasticity due to the coupling
of the surface states to bulk states, and calculated the
multiple scattering problem with this single atom data.

Since the on-atom electron orbital density is not ac-
counted for in scattering theory, we used an on-atom fit
(from experimental data of a single, isolated Co atom on
Cu(111) at 4 K) involving only a renormalization of the
free-space Green’s function, Gret

0 (r′, r, ǫ), and a change in
the background phase shift to compute the STM signal
on top of a Kondo adatom (Kawasaka and et al., 1999;
Plihal and Gadzuk, 2001; Schiller and Hershfield, 2000).
This on-atom fit is not part of our theory, but only a
means of setting a reference point between on-atom den-
sity not accounted for in our theory and the electron
density anywhere more than 7 Å away from an atom on
the surface which is accounted for properly in our theory.
This fit in no way compromises our fundamental result
that the mirage is due to resonantly scattering electrons
from the Kondo atoms of the walls and focus. It is used
only as a method of determining as accurately as possible
the phase shift of the Co on Cu(111). Determining the
phase shift this way from experimental data constitutes
a measurement of the single Kondo atom phase shift. We
find a good fit to the s-wave phase shift to be

δ(ǫ) = δbg + iδ′′ + tan−1(
ǫ− ǫ0
Γ/2

) , (27)

where δbg = π
4 ± π

10 , δ′′ = 3
2 ± 1

4 , Γ = (9 ± 1) meV and
ǫ0 = EF -1 meV are determined by experiment; δbg is
a background phase shift (possibly due to static charge
screening at the impurity) that controls the resonant line
shape of the adatom scattering cross-section20 and δ′′ is
a measure of the inelasticity in adatom scattering and

20 Recently Schneider et al. (2002) have determined the phase shift
of Co on Ag(111) which has a TK of 92 K and found similar
values to ours determined for Co on Cu(111).
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FIG. 11 Topographical standing wave patterns of a Kondo
corral. Using the scattering theory and phase shifts described
in the text, these STM topographic images were computed
using exact Co adatom positions on Cu(111) at 4 K. The
agreement between theory (a, c and e) and experiment (b, d

and f) is remarkable. All the experimental images have been
symmetrized by adding the image to itself after being reflected
about its major axis. Topographic images were calculated by
numerically integrating the LDOS(~r, ǫ) over ǫ for EF ≤ ǫ ≤

EF + 10 mV. This corresponds to the topographic images
taken experimentally in b and d at a bias voltage of 10 mV.
e is the difference of a and c. f is the difference of b and d.

controls the attenuation of the mirage at the empty fo-
cus. Tan−1( ǫ−ǫ0

Γ/2 ) reflects resonant scattering due to the

presence of Kondo physics and can be seen to follow di-
rectly from Eq. (22) and the density of states shown in
Fig. 9. A similar phase shift (without the inelastic piece,

δ′′) would result from the model of Újsághy et al. (2000).
It is likely that both bulk and surface states are partici-
pating in the Kondo effect at an adatom21, but the STM
signal is more sensitive to the surface state Kondo effect

21 The most recent experiments by Knorr et al. (2002), suggest that
the Kondo effect at Kondo impurities on surfaces is in fact dom-
inated by bulk states.

c

a

e

d

b

f

FIG. 12 dI/dV Standing wave patterns of a Kondo corral.
Same theoretical vs. experimental arrangement as in Fig. 11.
dI/dV measurements were taken simultaneously with topo-
graphic images at a 10 meV bias. Note that e and f resemble
an eigenstate of the ellipse. The ellipse was constructed to
have large surface state amplitudes at the two foci.

in the regime of validity of our theory (> 7 Å away from
adatom).

Applying the scattering theory of Sec. IV and the phase
shift, Eq. (27), to elliptical corrals results in the im-
ages shown in Figs. 11 and 12. The agreement with
experiment is excellent. Our calculation of the tunnel-
ing spectrum at the two foci is compared with experi-
ment in Fig. 13. Note that the signal at the unoccu-
pied focus is attenuated by approximately a factor of
8, both experimentally and theoretically. The calcu-
lated spectroscopy in Fig. 13 most clearly demonstrates
that the Kondo mirage is due only to resonant scatter-
ing of electrons from the Co adatom at the opposite fo-
cus, even though the electrons are also resonantly scat-
tering from the wall adatoms: Calculations performed
with δ = i∞ (Heller et al., 1994) instead of δ(ǫ) from
Eq. (27) for the wall atoms show the Kondo resonances
of the wall atoms play no essential role in the projection
of the mirage to the empty focus as the signal in Fig. 13
is essentially unchanged. Experimentally the same re-
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FIG. 13 Tunneling into the focal atom and empty focus: The
Mirage. Tunneling spectroscopy is calculated (dashed lines)
with the scattering theory and phase shift given in the text at
the empty focus a. Tunneling spectroscopy at the occupied
focus is shown in b. A constant background slope has been
removed from both the experimental data and the calculation.
The attenuation of the mirage is determined by inelasticity in
the scattering of electrons at the walls of the ellipse. The
theoretical signal 5 Å away from the empty focus in a is lost
in the noise of the experiment and is not a breakdown of the
theory.

sult is found when the wall Co adatoms are replaced by
CO (Manoharan et al., 2000).

Only certain ellipses will give a good mirage effect–
those which have large surface state amplitudes at the
foci when the scattering problem is calculated–and this
depends on the relative dimensions of the ellipse and λF .
Only then will there be appreciable surface state electron
amplitude at the focal adatom to give a strong signal
of Kondo effect in the surface states of Cu(111) at the
opposite focus.22 Our theory predicts that the quantum
mirage is not restricted to an ellipse or even a “closed”
structure. Any time one can construct an arrangement
of adatoms or other defects that lead to a buildup of
surface state electron amplitude at two locations within
the coherence length of the electron, a mirage can be
projected.

In conclusion, the quantum mirage reveals no infor-
mation about local polarization of the surface state (or
bulk) electrons. The unpolarized STM cannot measure
the size of the Kondo “screening cloud” since it only re-
turns an average signal of spin up and spin down electrons

22 The relative size of the surface state amplitude at a given position
inside the ellipse also explains why the projection of the Kondo
mirage is insensitive to whether the walls are Kondo (Co) or not
(CO). Near the walls, this amplitude is small in ellipses that have
peak amplitudes at the foci.

(or holes) tunneling into the surface. However, there are
still several important things that can be learned from a
combination of scattering theory and experiment about
Kondo impurities on the surfaces of noble metals. Firstly,
Kondo impurities still act, to a large extent, like “black
dot” scatterers. This is clear from the appreciable imag-
inary part of the scattering phase shift given in Eq. (27).
The Kondo effect effect does not “block” or inhibit the
scattering of surface state electrons into the bulk at the
impurities.23 Secondly, the Fano line shape of the quan-
tum mirage can be understood from a resonance in the
scattering phase shift with a non-zero background phase
shift. This complements the “on atom” picture of the
Fano resonance in dI/dV which can be thought of as elec-
trons tunneling into both the conduction electron states
of the host (of surface and bulk character) and electrons
tunneling into the “d-level” of the impurity (Li et al.,
1998b; Madhavan et al., 1998; Plihal and Gadzuk, 2001;
Schiller and Hershfield, 2000). For an STM tip initially
above a Kondo impurity, one can think of the Fano
line shape from tunneling as “rolling over” to a Fano
lineshape from scattering when the tip moves laterally
away from an impurity (Fiete et al., 2001; Újsághy et al.,
2000). Thirdly, the fact that the atoms in corral walls
show a Kondo resonance much the same as the reso-
nance from an isolated impurity on the surface means
that the RKKY interactions between impurities is very
weak. Moreover, the mirage is independent (both theo-
retically and experimentally) of the character of the wall
atoms. In the corrals that show a strong mirage the sur-
face state electron density is small near the walls, yet the
STM signal of the wall atoms is more or less unchanged.
This suggests that it is mostly the bulk electrons that
are involved in the Kondo effect. This is the same con-
clusion that has been reached recently by Knorr et al.

(2002) from studies of a single Kondo impurity.

IX. RELATED WORK AND RECENT DEVELOPMENTS

Recently there have been several important develop-
ments in the study of quantum corrals, especially related
to the recent mirage experiments and studies of the life-
times of quasi-particles in the surface states. While our
scattering theory explains nearly all of the observed fea-
tures of quantum corrals, including the mirage exper-
iments, it is phenomenological and based on a single-
particle model. A full understanding of the surface state
response to magnetic impurities requires more detailed
studies: Experimentally with spin resolved STM and
theoretically with first principle and many-body calcu-

23 In principal, the Kondo effect should lessen the incoherent scat-
tering at the atoms because it tends to “freeze-out” the spin,
when compared to Fe impurities, for example. (Assuming, of
course, that spin-flip scattering is indeed important at the Fe
impurities.)
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lations. It is necessary to go beyond the single-particle
theory, for example, to accurately calculate quantities
such as spin-spin correlation functions of impurities in
quantum corrals, details of the Kondo effect itself or how
surface state lifetimes can be modified by quantum cor-
rals. Some of these studies have already been undertaken
and we briefly describe them below.

A. Experimental

Since the mirage experiments, there have been few
experimental studies specific to corrals reported; how-
ever, Kliewer et al. (2000b) have studied the effect of the
modification of surface state electron density by corrals
on the spectroscopy of Mn on Ag(111) and Kliewer et al.

(2001) and Braun and Rieder (2002) have used quan-
tum corrals and related structures to obtain informa-
tion about the many-body lifetime effects in the sur-
face states. Most STM studies have focused on the
Kondo effect from the impurities themselves. Chen et al.

(1999) reported the disappearance of the Kondo res-
onance for Co dimers on Au(111). Jamneala et al.

(2000) carried out a systematic study of 3-d elements on
Au(111). Odom et al. (2000) reported Kondo effect from
Co clusters adsorbed on single wall metallic nanotubes.24

Madhavan et al. (2001) studied Co on Au(111) as a func-
tion of impurity coverage from isolated impurities up to
one monolayer. Nagoaka et al. (2002) looked at the tem-
perature dependence of the broadening of the Kondo res-
onance of Ti on Ag(100). Schneider et al. (2002) mea-
sured the scattering phase shift from isolated Co atoms
on Ag(111) and Knorr et al. (2002) have studied the role
of surface and bulk state contributions to the Kondo ef-
fect for Co on Cu(100) and Cu(111).

B. Theoretical

On the theoretical side, much more work has focused
on the quantum mirage in corrals rather than on the sin-
gle impurities. Agam and Schiller (2001); Porras et al.

(2001) and Weissmann and Bonadeo (2001) have also
developed theories for the quantum mirage based on a
single-particle picture. More recently, Aligia (2001) and
Shimada et al. (2002) has developed a many-body the-
ory of the quantum mirage. Chiappe and Aligia (2002)
and Correa et al. (2002) have undertaken studies of the
interaction between two magnetic impurities in a quan-
tum corral. A model of interactions between two impuri-
ties in states confined to the surface of a sphere was stud-
ied by Hallberg et al. (2002). A recent renormalization
group study carried out by Cornaglia and Balseiro (2002)

24 The Kondo effect generated by a ferromagnetic cluster turns out
to have several interesting and nontrivial new features compared
to a single impurity (Fiete et al., 2002).

for Kondo impurities in nanoscale systems also makes
contact with the mirage experiments. A recent work
by Morr and Stavropoulos (2003) looks at the quantum
mirage from non-Kondo impurities in a quantum corral
built on a superconductor.

While there are now several theories addressing the
physics of the mirage, we feel the least addressed ques-
tion is that of the relative role of surface and bulk states
in the formation of the Kondo effect at a single impu-
rity. Many theories tend to neglect the bulk states and
treat the quantum corral as a confined 2-d system. We
believe theory should now move beyond this and include
the role of both surface states and bulk states in Kondo
resonance. It remains clear, however, that the mirage
effect is dominated by a Kondo effect that involves the
surface state electrons because the phase shift, Eq. (27),
demands it.

X. VARIATIONS OF “QUANTUM” CORRALS: OPTICAL

CORRALS AND ACOUSTICAL CORRALS

Recently there have been several interesting variations
of “quantum” corrals. Most notably, there are now both
theory (de Francs et al., 2001; Wubs and Lagendijk,
2002) and experimental realizations (Chicanne et al.,
2002) of optical quantum corrals and related structures.
The theory of optical corrals is quite similar to quantum
corrals, the main difference being that the electric field is
a vector field while the wavefunction is a scalar field. In
the optical corrals the adatoms are replaced by “posts”
of a different dielectric constant to confine the electric
field.

The same basic physics of quantum corrals also applies
to acoustical corrals in which one can define a LDOS
of states that is a local acoustical impedance function.
The impedance is of course determined by the same
“in phase” vs “out of phase” condition of the returning
wave relative to the outgoing wave. A map of acoustical
impedance as a function of position in the room should
show exactly the same type of oscillation with distance as
does the STM dI/dV data. This serves to again remind
us that the STM images are not “snapshots” of a wave
caught in a cavity, like water waves in a bathtub at some
moment. In fact the analogy of the quantum corrals and
room acoustics is quite close, since a Q-factor of 2 is not
unusual for relatively “quiet” rooms.

XI. CONCLUSIONS

In this Colloquium we have reviewed the basic physics
of quantum corrals, including the more recent experi-
ments involving the Kondo effect. A single-particle scat-
tering theory with only an s-wave phase shift is able to
account quantitatively for nearly all of the experimental
observations to date, including the quantum mirage. It
is a generic feature of adatoms on the surfaces of the no-
ble metals that they strongly couple the surface states to
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the bulk states. This appears in the scattering theory as
an imaginary part of the phase shift. When the adatoms
are magnetic and below their Kondo temperature, the
many-body Kondo resonance can be taken into account
phenomenologically with a resonance in the phase shift,
Eq. (27).

The scattering theory that we have presented is valid
anywhere more than ∼ 7 Å away from an adatom as
this is the scale over which an adatom strongly disturbs
the local charge density. From Kondo impurities there
is Fano resonance in dI/dV that persists as the STM tip
is moved from directly over a Kondo atom to a location
10 Å or more laterally away from it. For Kondo impu-
rities, the ∼ 10 Å spatial extent of the Fano line shape
in dI/dV is not a measure of the Kondo screening cloud.
To date all reported STM studies of Kondo impurities
have been unpolarized and hence they are insensitive to
local spin polarization. What the ∼ 10 Å spatial scale
most likely reflects is the scale over which the STM tip
can strongly couple to the atomic states of the impuri-
ties. Hence, it is a scale associated with charge rather
than spin. The mirage, therefore, reflects nothing about
local spin correlations at the empty focus of the elliptical
quantum corral. It is simply a way of probing the Kondo
resonance of the impurity at the opposite focus through
coherent electron propagation in the surface states. The
signal at the empty focus can be thought of as a “scatter-
ing” Fano resonance originating from a resonance piece
and a energy independent background piece in the scat-
tering phase shift of the Kondo atom.

The new frontier in quantum corral experiments clearly
lies in two directions: (i) Spin-polarized STM and (ii)
Probes of many-body physics. There are already sev-
eral theories that predict strong spin correlations be-
tween impurities in corrals (Chiappe and Aligia, 2002;
Correa et al., 2002; Gyorffy, 2002) although none have
yet been experimentally reported. The relative role
of bulk and surface states in the Kondo effect is still
an open question, although experimental progress has
been made (Knorr et al., 2002) which suggest that the
Kondo effect is dominated by bulk states. Quantum
corrals can also provide tunable environments to study
and even modify the physics of the surface states them-
selves (Braun and Rieder, 2002; Kliewer et al., 2001).
With ever improving experimental technology we expect
to see even more surprises and fascinating effects to ap-
pear in these tiny, engineered laboratories of many-body
physics.
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Újsághy, O., G. Zaránd, and A. Zawadowski, 2001, Solid State

Comm. 117, 167.
Weissmann, M., and H. Bonadeo, 2001, Physica E (Amster-

dam) 10, 44.
Wubs, M., and A. Lagendijk, 2002, Phys. Rev. E 65, 046612.


