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1) Introduction et motivation 

La possibilité de "variables cachées" en mécanique quantique est discutée depuis les années trente. 

Pour modéliser nos expériences d'amplification paramétrique, nous utilisons des modèles 

stochastiques qui peuvent, ou non, recouvrir cette notion de variables cachées. Je discuterai cette 

question à la fin de ce texte, après avoir présenté en quoi une paire de photons intriqués en 

polarisation est une entité non locale, bien que compatible avec la relativité restreinte. 

 La seule notion de mécanique quantique que je supposerai connue est la notion d'état quantique: 

|𝜓 > =  α |α > +β |β > +⋯  𝑎𝑣𝑒𝑐  | α|2 + |β|2 + ⋯ = 1 

|α|2 , par exemple, est la probabilité du système  décrit  par |𝜓 >  d′être mesuré dans  l'état |α >. 

Après la mesure, dite projective, le système est alors dans l'état |α > seul. α, β,.. sont des amplitudes 

de probabilité, a priori complexes, et peuvent, formellement, être vues comme les amplitudes des 

composantes du vecteur |𝜓 >. Je traiterai dans la suite un état représentant deux particules (photons), 

qui sera défini comme un vecteur dans l'espace produit tensoriel des espaces vectoriels associés à 

chaque particule. 

2) Champ électrique lumineux classique polarisé rectiligne, séparateur de polarisation. 

 Dans le plan perpendiculaire à la direction de propagation, ce 

champ est décrit par un vecteur de module 𝐸0, faisant un angle 

avec un vecteur unitaire horizontal 𝐻⃗⃗ . On a donc  

 𝐸0
⃗⃗⃗⃗ = 𝐸0(cos 𝜃 𝐻⃗⃗ + sin 𝜃 𝑉⃗ ) = 𝐸0 𝜃  , où 𝜃  est unitaire, et 

 𝐻⃗⃗ = cos 𝜃 𝜃 − sin𝜃 𝜃⊥ 
⃗⃗ ⃗⃗  ⃗ ,   où 𝜃⊥ 

⃗⃗ ⃗⃗  ⃗  est unitaire orienté à +
𝜋

2
 de 𝜃 ,               

                                      𝑉 ⃗⃗  ⃗ =  sin 𝜃 𝜃 + cos 𝜃 𝜃⊥ 
⃗⃗ ⃗⃗  ⃗. 

Il est possible à l'aide d'un séparateur de polarisation (Wollaston) de séparer les deux composantes 

orthogonales de 𝐸0
⃗⃗⃗⃗ . On obtient par exemple suivant 𝐻⃗⃗  une onde lumineuse d'intensité proportionnelle 

à 𝐸0
2 cos2 𝜃 . Bien entendu, il est possible de tourner le Wollaston de façon à décomposer  𝐸0

⃗⃗⃗⃗  suivant 

deux autres directions orthogonales. 

3) Etat à deux photons intriqués 

On considère l'état |𝜓 > =  
1

√2
 (|𝐻1𝐻2 > +|𝑉1𝑉2 >), où l'indice 1 (2), désigne le  photon 1 (2) d'une 

paire de photons d'une source n'émettant que des paires de photons. Les occurences d'émission sont 

aléatoires, mais les photons sont toujours émis par paires. Chacun des deux photons se propage dans 

une direction différente de l'autre, ce qui permet de les séparer et d'analyser pour chacun sa 

𝜃 

𝐻⃗⃗  

𝐸0
⃗⃗⃗⃗  

𝑉⃗  
𝜃⊥ 
⃗⃗ ⃗⃗  ⃗ 
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𝜃2⊥

 

photon 1 photon 2 

polarisation à une distance arbitrairement grande de son jumeau, suffisamment grande pour tourner 

le Wollaston analysant la polarisation du photon 1 (2) sans que cette orientation puisse être 

communiquée, à une vitesse inférieure à c, au photon 2 (1). Pour les besoins du dessin ci-dessous, les 

directions de propagation sont supposées opposées. 

 

 

 

 

 

 

Le sens de l'état |𝜓 > ci dessus est clair dans un cas de mesure simple. Si on analyse les deux photons 

suivant les directions 𝐻⃗⃗  et 𝑉⃗ , ils sortiront, avec une probabilité 1/2, soit tous les deux sur 𝐻⃗⃗ , soit tous 

les deux sur 𝑉⃗  . L'état |𝜓 > est dit intriqué, ou non séparable, du fait qu'il ne peut pas se mettre sous 

la forme d'un produit |𝜓1𝜓2 >. Par exemple, un état séparable avec |𝜓1 > =
1

√2
 (|𝐻1 > +|𝑉1 >) et  

|𝜓2 > =
1

√2
 (|𝐻2 > +|𝑉2 >) donnerait |𝜓1𝜓2 > =

1

2
 (|𝐻1𝐻2 > +|𝑉1𝑉2 > +|𝐻1𝑉2 > +|𝑉1𝐻2 >). 

Comment produire expérimentalement un état intriqué 

Les expériences du groupe d'Aspect, en 1981-82 [1,2] utilisaient une désexcitation atomique en 

cascade que je ne décrirai pas. Les sources paramétriques sont devenus la méthode standard depuis 

1988. Dans un cristal adapté, des photons pompe de fréquence 𝜔𝑝 génèrent des paires de photons 

dites signal et idler de même fréquence 𝜔𝑠 = 𝜔𝑖 =
𝜔𝑝

2
  mais de polarisation orthogonale, en 

respectant la conservation de l'énergie: le processus de conversion est aléatoire, mais un photon 

pompe se convertit exactement en une paire de photons signal-idler. De plus, une propriété dite 

d'accord de phase doit être obtenue : la somme des vecteurs d'onde signal et idler doit être égale au 

vecteur d'onde pompe :  𝑘𝑠
⃗⃗⃗⃗ + 𝑘𝑖

⃗⃗  ⃗ = 𝑘𝑝 
⃗⃗⃗⃗  ⃗ . 

L'idée la plus évidente pour obtenir l'état |𝜓 > est d'envoyer les deux photons sur les deux voies 

d'entrée d'une lame semi-transparente. On obtient alors l'état voulu lorsque les deux photons veulent 

bien sortir chacun sur une des voies de la lame, ce qui se produit avec une probabilité 1/2. Dans ce cas, 

les détecteurs enregistreront une coïncidence qui sera prise en compte, alors que deux photons 

sortant sur une même voie conduiront à une détection unique (le détecteur ne distingue pas entre un 

et deux photons arrivant ensemble), qui sera ignorée.  L'expérience a été réalisée  et conduit à une 

violation des inégalités de Bell [3,4].  

Pour éviter cette sélection des photons, l'expérience de Kwiatt et al., réalisée en 1995 et représentée 

page suivante, utilise une propriété de l'accord de phase dans une configuration bien choisie : les 

cercles du signal et de l'idler se coupent et on obtient l'état 
1

√2
 (|𝐻1𝑉2 > +|𝑉1𝐻2 >) si on appelle 

photon 1 celui provenant de l'intersection des faisceaux à gauche et photon 2 celui de l'intersection 

des faisceaux à droite. On passe à l'état |𝜓 >   par une simple rotation d'un quart de tour des 

coordonnées du photon 2.  Certes, on évite de sélectionner les paires de photons en coïncidence, mais 

on sélectionne spatialement les deux zones d'intérêt de l'accord de phase, avec le gros intérêt d'éviter 

que les deux photons d'une paire arrivent parfois sur le même détecteur.  

Source 𝜃2

 

 

O

O 

𝜃1

 

𝜃1⊥
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Expérience de Kwiatt et al. , 1995 [5] 
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Détection du photon 1 seul 

 Intéressons nous tout d'abord à la probabilité de détecter le photon 1 suivant 𝜃1. Puisqu'on ne mesure 

pas le photon 2, on pourrait croire qu'il suffit d"enlever" le photon 2 dans la fonction décrivant |𝜓 >,  

qui se réduirait à |𝜓1 >. On trouverait alors |𝜓1 > =
1

√2
 (cos𝜃1 + sin 𝜃1) |𝜃 1 > +(cos𝜃1 −

sin𝜃1) |𝜃1⊥>, soit une probabilité de détection suivant 𝜃1 : 

 𝑃(𝜃1) =
1

2
 (cos 𝜃1 + sin 𝜃1) 

2 = cos2 (𝜃1 −
𝜋

4
) . Comme il est assez clair du fait de l'expression de 

|𝜓1 >, le photon 1 serait polarisé à 45°. 

Ce raisonnement est faux. Quoi qu'il arrive au photon 2, détecté ou non à une distance éventuellement 

très grande du photon 1, il faut continuer de le prendre en compte, ce qui donne :  

|𝜓 > =  
1

√2
 (cos 𝜃1 |𝜃1𝐻2 > +sin𝜃1 |𝜃1𝑉2 > −sin𝜃1 |𝜃1⊥𝐻2 > +cos𝜃1 |𝜃1⊥𝑉2 >), 

Les deux premiers termes contribuent à une détection du photon 1 suivant 𝜃1 mais, à cause du photon 

2, ne correspondent pas au même état : il faut effectuer la somme de leurs carrés et non le carré de 

leur somme. Soit 𝑃(𝜃1) =
1

2
 ((cos 𝜃1) 

2 + (sin𝜃1) 
2) =

1

2
 . 

Le photon 1 est dépolarisé : il est détecté avec une probabilité 1/2 sur une des voies du polariseur, 

quelle que soit la direction de ce polariseur. 

Détection conjointe des photons 1 et 2 

Pour trouver la probabilité conjointe de détecter les photons 1 et 2 derrière deux polariseurs orientés 

respectivement suivant 𝜃1 et 𝜃2 il suffit d'écrire |𝜓 > dans la base 𝜃1
⃗⃗⃗⃗ , 𝜃2

⃗⃗⃗⃗  : 

|𝜓 > =
1

√2
 ((cos 𝜃1 cos 𝜃2 + sin𝜃1 sin𝜃2)   |𝜃1𝜃2 > 

+ 𝑎𝑢𝑡𝑟𝑒𝑠 𝑡𝑒𝑟𝑚𝑒𝑠 𝑒𝑛 |𝜃1𝜃2⊥ >, |𝜃1⊥𝜃2 >, 𝜃1⊥𝜃2⊥ >) 

soit P(𝜃1𝑒𝑡 𝜃2)= 
1

2
 cos2(𝜃1 −𝜃2 ) ,      P(𝜃1| 𝜃2)=cos2(𝜃1 −𝜃2 )  

où la deuxième égalité est une probabilité conditionnelle : | signifie  "sachant". 

Il y a une très forte corrélation entre les photons. Si 𝜃1 =  𝜃2, les photons sortent toujours ensemble 

sur les voies 𝜃1, 𝜃2 ou ensemble sur 𝜃1⊥, 𝜃2⊥, et ceci même si les photons sont très éloignés et si les 

orientations des polariseurs ont été définies tardivement, quand les photons ne pouvaient plus 

communiquer avant leur détection. Il y a donc incontestablement un caractère non local à ce 

formalisme. Cependant, peut-on en déduire dans les mots de Bell [6] que : "nous ne pouvons pas éviter 

que l'intervention d'un côté ait une influence causale de l'autre"? L'"intervention" est une rotation du 

polariseur 2. Pour déterminer l'"influence" du côté 1, calculons la probabilité  

P(𝜃1| 𝜃2⊥)=cos2 (𝜃1 −𝜃2 −
𝜋

2
 ) =  sin2(𝜃1 −𝜃2 ) , ce qui assure la relation déjà vue 

 𝑃(𝜃1) = P(𝜃1𝑒𝑡 𝜃2) + P(𝜃1𝑒𝑡 𝜃2⊥) = P(𝜃1| 𝜃2)𝑃(𝜃2) + P(𝜃1| 𝜃2⊥)𝑃(𝜃2⊥) =
1

2
 .  
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Il n'y a aucun moyen de s'apercevoir en 1 de la rotation du polariseur en 2, ce qui serait évidemment 

contraire à la relativité restreinte. On ne peut que constater la corrélation des photons après coup, en 

échangeant de l'information à une vitesse inférieure à celle de la lumière. On peut résumer ces lignes 

en écrivant : 

[cos2𝜃+ sin2𝜃 = 1  ] ⇒ La mécanique quantique et la relativité restreinte sont compatibles. 

4) Inégalités de Bell 

Malgré cette compatibilité, que reste-t-il de non local dans la mécanique quantique ? Son formalisme 

est non local mais peut-il recouvrir une localité cachée dans l'intrication locale partagée par les photons 

dans la source, avant leur séparation ? Cette question a été formalisée par John Bell de la façon 

suivante. Notons 𝑆1=1 l'évènement "sortie du photon 1 par la voie 𝜃1" et 𝑆1=-1 l'évènement "sortie du 

photon 1 par la voie 𝜃1⊥", et de même  𝑆2 pour le photon 2. Les photons sont créés ensemble dans le 

cristal non linéaire, par annihilation d'un même photon pompe, et ont pu, au moment de cette 

création, procéder à un tirage au sort commun sur leur façon d'agir face à leur polariseur respectif : ils 

partagent une variable aléatoire 𝜆 tirée au sort avec une densité de probabilité 𝑝(𝜆) et, pour cette 

valeur 𝜆 correspondant par exemple à une ligne du tableau du paragraphe 5,  décident les valeurs de 

𝑆1, 𝑆2 pour toutes les orientations de polariseur qu'ils rencontreront une fois séparés. On définit ainsi 

deux fonctions 𝑆1(𝜆, 𝜃1) et 𝑆2(𝜆, 𝜃2). Il est crucial de comprendre qu'une fonction 𝑆1(𝜆, 𝜃1, 𝜃2) est 

interdite par la localité : le photon 1, au moment de traverser ou non son polariseur, ne dispose que 

de la valeur de 𝜆 et de l'orientation de son polariseur 𝜃1.  𝜃2 lui est inconnu et a été fixé en dehors de 

son cône temporel. Ce point difficile étant compris, calculons : 

𝐸(𝜃1, 𝜃2) =<  𝑆1 𝑆2 > = ∫𝑝( 𝜆) 𝑑𝜆 𝑆1(𝜆, 𝜃1) 𝑆2(𝜆, 𝜃2) 

Et autorisons une rotation possible de chaque polariseur, soit deux autres orientations 𝜃′1, 𝜃′2. 

Définissons B comme :  

B= 𝐸(𝜃1, 𝜃2) − 𝐸(𝜃1, 𝜃
′
2) + 𝐸(𝜃′

1, 𝜃2) + 𝐸(𝜃′1, 𝜃′2) 

Alors, dans l'hypothèse de localité, on montre |𝐵| ≤ 2.  

Cette forme des inégalités de Bell est due à Clauser, Horne, Shimony, Holt  (CHSH) [7]. La démonstration 

ne pose pas de problème particulier mais est quelque peu calculatoire. J'en présenterai une forme 

légèrement différente au paragraphe 6 et c'est cette forme dont je transcrirai la démonstration en 

Annexe. 

5) Violation des inégalités de Bell 

Je commencerai ce paragraphe par une situation où ces inégalités ne sont pas violées, alors qu'on 

pourrait intuitivement attendre le contraire. Le choix le plus naturel des orientations est un couple 

𝜃1 =  𝜃2 = 0, où la corrélation est totale, et des rotations 𝜃′1 =  𝜃′2 =
𝜋

4
, qui assurent une corrélation 

nulle entre, par exemple,  𝜃1 et  𝜃′2. Ce choix fait référence à l'article Einstein-Podolsky-Rosen [8] (EPR) 

qui traitait des variables position et quantité de mouvement : une précision infinie sur la position d'une 

particule entraîne une incertitude maximale sur sa quantité de mouvement et vice-versa. Ici un photon 

polarisé H sort avec une probabilité 1/2 sur un polariseur orienté à 
𝜋

4
 ou sur la voie orthogonale. 
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L'argument EPR devient donc : si le photon 2 est mesuré comme polarisé H, le photon 1 soumis à un 

polariseur (H,V) sortira en H avec une probabilité de 1. Il existe donc un élément de réalité dans sa 

polarisation horizontale. Or "sans perturber en aucune manière le système 1", on peut tourner le 

polariseur 2 et mesurer une polarisation diagonale D. Le photon 1 est donc aussi polarisé D, ce qui est 

impossible car polarisé H. La mécanique quantique est donc incomplète, bien que "One would not 

arrive at our conclusion if one insisted that two or more physical quantities can be regarded as 

simultaneous elements of reality only when they can be simultaneously measured or predicted [...] 

This makes the reality of P and Q depend upon the process of measurement carried on the first (pour 

cet exposé, photon 2) system, which does not disturb the second system in any way. No reasonable 

definition of reality could be expected to permit this". Pour John Bell [6], on doit conclure que tourner 

le polariseur 2 a une influence causale sur la polarisation du photon 1. J'ai expliqué au paragraphe 

précédent pourquoi je pensais cette interprétation excessive. 

Pour les orientations 𝜃1 =  𝜃2 = 0, 𝜃′1 =  𝜃′2 =
𝜋

4
, un modèle à variables cachées reproduit 

parfaitement les résultats de la mécanique quantique, contrairement à ce qu'on pourrait attendre de 

ce lien direct avec EPR. Les photons choisissent avec une probabilité 1/4, suivant la valeur de la variable 

aléatoire 𝜆, une des 4 lignes du tableau suivant : 

            S1(𝜃1 = 0)   S1(𝜃′1 =
𝜋

4
 )     S2(𝜃2 = 0)   S2(𝜃′2 =

𝜋

4
 ) 

 1     1          1           1 

              1   -1          1           -1 

             -1    1        -1            1 

 -1   -1       -1           -1 

 

On calcule B= 𝐸(0,0) − 𝐸 (0,
𝜋

4
) + 𝐸 (

𝜋

4
, 0) + 𝐸 (

𝜋

4
,
𝜋

4
) = 1 − 0 + 0 + 1 = 2 

L'inégalité CHSH est respectée, et d'ailleurs le calcul est le même en variable cachée ou en mécanique 

quantique.  

Avant d'indiquer les orientations conduisant à une violation, calculons 𝐸(𝜃1, 𝜃2) donné par la 

mécanique quantique : 

𝐸(𝜃1, 𝜃2)𝑀𝑄 =<  𝑆1 𝑆2 > 

= (1.1)P(𝜃1𝑒𝑡 𝜃2) + (−1). (−1)P(𝜃1⊥𝑒𝑡 𝜃2⊥) + (1). (−1)P(𝜃1𝑒𝑡 𝜃2⊥) + (−1). (1)P(𝜃1⊥𝑒𝑡 𝜃2)  

=
1

2
 . 2 . (cos2(𝜃1 −𝜃2 ) − sin2(𝜃1 −𝜃2 ) ) = cos (2(𝜃1 −𝜃2 )) 
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On choisit alors 𝜃1 = 0,  𝜃2 =
𝜋

8
, 𝜃′1 =

𝜋

4
,  𝜃′2 =

3𝜋

8
 

soit BMQ= 𝐸 (0,
𝜋

8
) − 𝐸 (0,

3𝜋

8
) + 𝐸 (

𝜋

4
,
𝜋

8
) + 𝐸 (

𝜋

4
,
3𝜋

8
) =

√2

2
− (−

√2

2
) +

√2

2
+

√2

2
= 2√2 > 2 

Notons le rôle de l'anti-corrélation (deuxième terme), qui ne se retrouve pas dans le raisonnement 

EPR. On montre sans difficulté que c'est la valeur de B maximale en fonction des orientations des 

polariseurs. 

6) Expériences d'Aspect 

Les premières expériences pour mesurer B, dues à Clauser [9], utilisaient des polariseurs à une seule 

voie, ce qui ne permettait pas une utilisation directe des relations CHSH. Dans les expériences d'Aspect, 

voir figure ci-dessous, les polariseurs à deux voies de sortie permettent la mesure des quatre flux de 

coïncidences entre les photons 1 et 2, soient, en notant + un photon sortant par 𝜃1 ou𝜃2 , 

correspondant à S=1 et – les photons pour S=-1 suivant 𝜃1⊥ ou 𝜃2⊥, les flux 

𝑅++, 𝑅−−, 𝑅+−, 𝑅−+ exprimés en nombre de coïncidences par seconde. La fenêtre de coïncidence a 

une durée de 50 ns, dix fois la durée de vie de l'état intermédiaire de la désexcitation, ce qui permet 

d'enregistrer toutes les vraies coïncidences. On calcule alors la moyenne arithmétique : 

𝐸(𝜃1, 𝜃2) =  𝑆1 𝑆2
̅̅ ̅̅ ̅̅ ̅ =

𝑅++ + 𝑅−− − 𝑅+− − 𝑅−+  

𝑅++ + 𝑅−− + 𝑅+− + 𝑅−+ 
 

On vérifie que le dénominateur représente le nombre total de coïncidences, c'est à dire la division par 

le nombre de répétitions de l'expérience constitutif d'une moyenne arithmétique, tandis que le 

numérateur est la somme des valeurs de  𝑆1 𝑆2 pour chaque répétition. On trouve des résultats en 

excellent accord avec la mécanique quantique pour toutes les différences 𝜃1−𝜃2, donc, pour les 

orientations adéquates,  une violation des inégalités de Bell très proche de la théorie. Dans la deuxième  

 

 

Dispositif expérimental de la première expérience d'Aspect. Figure tirée de [1] 
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expérience [2], un dispositif électro-optique aiguillait les photons, disons 2, sur deux polariseurs 

d'orientation différente, et ceci suffisamment tardivement pour être en dehors du cône temporel du 

photon 1 : la nature est non locale. Il faut cependant faire deux commentaires : 

-"fair-sampling"assumption 

Les rendements quantiques, c'est à dire les probabilités de détection d'un photon incident sur un 

détecteur, étaient faibles, ce qui veut dire que la plupart des paires n'étaient pas détectées, ou un seul 

photon était détecté ce qui ne donnait pas de coïncidence. Il faut donc admettre que la statistique des 

paires détectées est représentative de celle de l'ensemble des paires. On montre que cette hypothèse 

peut être levée si les rendements quantiques sont supérieurs à 0,83, ce qui est le cas dans les 

expériences "loophole-free" de 2015 [10]. 

-Soustraction des coïncidences accidentelles 

Deux photons détectés en coïncidence ne proviennent pas forcément d'une paire intriquée. Deux 

paires peuvent fournir chacune un photon dans la fenêtre de coïncidence ou, plus rarement, un photon 

détecté peut coïncider avec une fausse détection due au bruit de fond du détecteur. Ces coïncidences 

accidentelles se répartissent également sur les quatre flux de coïncidences et n'influent donc pas sur 

le numérateur de  𝑆1 𝑆2
̅̅ ̅̅ ̅̅ ̅, en tout cas dans la limite d'un grand nombre d'évènements.  En revanche, 

elles augmentent le dénominateur. Il est relativement aisé de connaître leur nombre à partir des flux 

de détection de photons seuls. Elles ont donc été soustraites du dénominateur, soit une soustraction 

de 10 s-1 pour un flux corrigé de 40 s-1. Si on n'effectue pas cette correction, les inégalités de Bell ne 

sont pas ou sont peu violées dans les expériences d'Aspect. La première expérience où cette 

soustraction n'a pas été effectuée est celle du groupe de Zeilinger en 1998 [11], puis bien sûr dans les 

expériences de 2015. 

Soustraire les coïncidences accidentelles revient à remplacer les produits d'intensités par les 

covariances de ces intensités: par exemple 𝐼1
+   sur 𝜃1 est remplacé par 𝐼1

+−< 𝐼1
+ > et 

 𝐼1
+𝐼2

+ par 𝐼1
+𝐼2

+−< 𝐼1
+ >< 𝐼2

+ >. Or,  

- on verra en annexe que la démonstration des inégalités CHSH sous la forme Aspect, effectuée en 

1986 [12] quatre ans après l'expérience, utilise |
𝐼𝑖
+−𝐼𝑖

−

𝐼𝑖
++𝐼𝑖

−| ≤ 1, i=1 ou 2. Ce n'est vrai que pour des 

intensités positives, ce qui n'est pas forcément le cas de 𝐼𝑖
+−< 𝐼𝑖

+ >. Dans une expérience idéale, on 

a 𝐼𝑖
+ + 𝐼𝑖

− =1 toujours, soit 𝐼𝑖
+ + 𝐼𝑖

−- <𝐼𝑖
+ + 𝐼𝑖

− > = 0. Il n'y a plus d'inégalités de Bell si on utilise les 

covariances. 

- Nous avons montré [13] que, pour des états gaussiens tels que la fluorescence paramétrique utilisée 

après 1988, l'utilisation des covariances permet l'obtention de BMQ quels que soient les flux, y compris 

pour des flux si intenses qu'on détecte l'intensité et non les photons. Bien que ne connaissant pas les 

propriétés exactes de l'état utilisé en 1981, je ne suis donc pas surpris de trouver un excellent accord 

avec la théorie en soustrayant les coïncidences accidentelles. 

Curieusement, la "fair-sampling assumption" a été beaucoup plus commentée que la soustraction des 

coïncidences accidentelles. Il n'en reste pas moins que Zeilinger, bien connu aussi pour les expériences 

de son groupe sur la téléportation quantique, a partagé le prix Nobel 2022 avec Clauser et Aspect. 

7) Simulations stochastiques et variables cachées  

Les simulations quantiques stochastiques, voir [14], semblent à première vue très proches d'un modèle 

à variables cachées. Décrivons-en rapidement et sans équations le principe. 
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1) A l'entrée du cristal, on tire au sort, à partir de lois gaussiennes, les parties réelles et imaginaires des 

champs électriques signal et idler sur chaque polarisation. Les champs obtenus représentent le vide 

quantique, avec une énergie moyenne d'un demi-photon par mode (unité d'information) spatio-

temporel et par polarisation. 

2) La propagation dans le cristal non linéaire, modélisée classiquement, entraîne une forte corrélation 

entre le signal et l'idler. 

3)  A la détection, la projection des champs sur les directions des polariseurs permet de calculer 

l'intensité sur chaque voie de sortie. 

En moyennant un très grand nombre de répétitions de la simulation, on retrouve les résultats 

théoriques, y compris en calculant des produits d'intensité et non leur covariance si les intensités sont 

faibles. 

En fait, on ne peut pas assimiler chaque répétition de la simulation à une expérience réelle car on doit 

au final retrancher le demi-photon par mode injecté au départ, ce qui peut conduire à une intensité 

négative. Seule la moyenne sur un grand nombre de répétitions a un sens physique précis, avec bien 

sûr une intensité qui doit être positive. De plus, on détecte dans le monde réel des nombres entiers de 

photons alors que l'intensité sur une répétition de la simulation peut prendre toute valeur, entière ou 

non entière. 

On peut assimiler une répétition de la simulation à une répétition de l'expérience seulement dans le 

cas d'un très grand nombre de photons par mode, où à la fois la correction d'un demi-photon et la 

discrétisation en nombres entiers de photons peuvent être ignorées. Dans ce cas, la simulation 

stochastique constitue bien un modèle à variables cachées, ce qui n'est pas perturbant car, comme on 

l'a vu, BMQ n'est obtenu qu'en utilisant les covariances, non sujettes aux inégalités de Bell. 

8) Actualité de la non localité 

Les photons intriqués ont été utilisés dans un grand nombre d'applications en optique quantique. Je 

ne citerai que la téléportation quantique [15] et la cryptographie à l'aide de photons intriqués [16] 

comme deux des premières applications.  

Merci à Stefan Neuwirth pour sa relecture attentive. 
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Annexe : démonstration des inégalités de Bell dans leur version CHSH-Aspect 

La normalisation des inégalités CHSH présente dans [1] et [2] n'apparaît pas dans CHSH [7]. Elle a sans 

doute été pensée par le groupe d'Aspect comme une simple moyenne arithmétique, comme expliqué 

au paragraphe 6. Cependant, en cas de coïncidence accidentelle, il peut y avoir plusieurs coïncidences 

dans une seule fenêtre et il vaut mieux suivre la démonstration d'abord exposée dans [12], puis reprise 

dans [17], que je transcris ici. 

Soit  𝑆𝑖(𝜆, 𝜃𝑖) =
𝐼𝑖
+(𝜆,𝜃𝑖)−𝐼𝑖

−(𝜆,𝜃𝑖)

𝐼𝑖
+(𝜆,𝜃𝑖)+𝐼𝑖

−(𝜆,𝜃𝑖)
=

𝐼𝑖
+(𝜆,𝜃𝑖)−𝐼𝑖

−(𝜆,𝜃𝑖)

 𝐼𝑖(𝜆)
, i=1 ou 2, 𝐼𝑖(𝜆) = 𝐼𝑖

+(𝜆, 𝜃𝑖) + 𝐼𝑖
−(𝜆, 𝜃𝑖) par 

définition.  𝐼𝑖(𝜆)  ne dépend pas de 𝜃𝑖 car un photon sort toujours sur une voie du polariseur.  

Les intensités étant positives, on a |𝑆𝑖| ≤ 1. 

Définissons :  𝐸(𝜃1, 𝜃2) =
1

Ν
∫𝑓(𝜆)𝑑𝜆 𝑆1(𝜆, 𝜃1)𝑆2(𝜆, 𝜃2), avec 𝑓(𝜆) = 𝑝(𝜆)𝐼1(𝜆)𝐼2(𝜆), 𝑝(𝜆) densité 

de probabilité et   Ν = ∫𝑓(𝜆)𝑑𝜆 . 

𝐸(𝜃1, 𝜃2) n'est donc plus égal à <𝑆1𝑆2 >, de façon à faire apparaître un facteur Ν de normalisation égal 

au dénominateur utilisé dans [1] et [2]. 

D'où 𝐸(𝜃1, 𝜃2) =
<(𝐼1

+( 𝜃1)−𝐼1
−( 𝜃1))(𝐼2

+( 𝜃2)−𝐼2
−( 𝜃2))>

<(𝐼1
+( 𝜃1)+𝐼1

−( 𝜃1))(𝐼2
+( 𝜃2)+𝐼2

−( 𝜃2))>
, c'est bien le ratio de coïncidences normalisé utilisé 

dans [1] et [2]. 

Dans la démonstration qui suit, faire bien attention au rôle des valeurs absolues dans les inégalités. 

 

𝐸(𝜃1, 𝜃2) − 𝐸(𝜃1, 𝜃
′
2)

= Ν−1 ∫𝑓(𝜆)𝑑𝜆 𝑆1(𝜆, 𝜃1)𝑆2(𝜆, 𝜃2)[1 ± 𝑆1(𝜆, 𝜃
′
1)𝑆2(𝜆, 𝜃

′
2)]    

− Ν−1 ∫𝑓(𝜆)𝑑𝜆 𝑆1(𝜆, 𝜃1)𝑆2(𝜆, 𝜃′2)[1 ± 𝑆1(𝜆, 𝜃
′
1)𝑆2(𝜆, , 𝜃2 )] 

or  |𝑆𝑖| ≤ 1 ⇒ |𝑆1(𝜆, 𝜃1)𝑆2(𝜆, 𝜃2)| ≤ 1 

d'où 

  |𝐸(𝜃1, 𝜃2) − 𝐸(𝜃1, 𝜃
′
2)|

≤ Ν−1 ∫𝑓(𝜆)𝑑𝜆[1 ± 𝑆1(𝜆, 𝜃
′
1)𝑆2(𝜆, 𝜃

′
2)]

+ Ν−1 ∫𝑓(𝜆)𝑑𝜆 [1 ± 𝑆1(𝜆, 𝜃
′
1)𝑆2(𝜆, , 𝜃2 )] =  2 ± (𝐸(𝜃′1, 𝜃′2) + 𝐸(𝜃′1, 𝜃2)) 

soit |𝐵| ≤ 2, 𝑎𝑣𝑒𝑐   𝐵 =  𝐸(𝜃1, 𝜃2) − 𝐸(𝜃1, 𝜃
′
2) +  𝐸(𝜃′1, 𝜃′2) + 𝐸(𝜃′1, 𝜃2) 

 

 

 

 

 

 


