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1) Introduction et motivation

La possibilité de "variables cachées" en mécanique quantique est discutée depuis les années trente.
Pour modéliser nos expériences d'amplification paramétrique, nous utilisons des modeles
stochastiques qui peuvent, ou non, recouvrir cette notion de variables cachées. Je discuterai cette
question a la fin de ce texte, aprés avoir présenté en quoi une paire de photons intriqués en
polarisation est une entité non locale, bien que compatible avec la relativité restreinte.

La seule notion de mécanique quantique que je supposerai connue est la notion d'état quantique:
Y >= ala>+B|B>+- avec |a|*> + B+ =1

la|? , par exemple, est la probabilité du systétme décrit par |{p > d'étre mesuré dans I'état |a >.
Aprés la mesure, dite projective, le systeme est alors dans I'état |a > seul. o, B,.. sont des amplitudes
de probabilité, a priori complexes, et peuvent, formellement, étre vues comme les amplitudes des
composantes du vecteur |1p >. Je traiterai dans la suite un état représentant deux particules (photons),
qui sera défini comme un vecteur dans |'espace produit tensoriel des espaces vectoriels associés a
chaque particule.

2) Champ électrique lumineux classique polarisé rectiligne, séparateur de polarisation.

Dans le plan perpendiculaire a la direction de propagation, ce
champ est décrit par un vecteur de module Ej, faisant un angle
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6, 0 avec un vecteur unitaire horizontal H. On a donc
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Il est possible a I'aide d'un séparateur de polarisation (Wollaston) de séparer les deux composantes
orthogonales de E‘g. On obtient par exemple suivant H une onde lumineuse d'intensité proportionnelle

a E02 cos? @ . Bien entenduy, il est possible de tourner le Wollaston de fagon a décomposer E, suivant
deux autres directions orthogonales.

3) Etat a deux photons intriqués

On considére I'état | > = \/—17 (|[H{H; > +|V 1V, >), ou l'indice 1 (2), désigne le photon 1 (2) d'une

paire de photons d'une source n'émettant que des paires de photons. Les occurences d'émission sont
aléatoires, mais les photons sont toujours émis par paires. Chacun des deux photons se propage dans
une direction différente de l'autre, ce qui permet de les séparer et d'analyser pour chacun sa



polarisation a une distance arbitrairement grande de son jumeau, suffisamment grande pour tourner
le Wollaston analysant la polarisation du photon 1 (2) sans que cette orientation puisse étre
communiquée, a une vitesse inférieure a c, au photon 2 (1). Pour les besoins du dessin ci-dessous, les
directions de propagation sont supposées opposées.
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Le sens de I'état |3p > ci dessus est clair dans un cas de mesure simple. Si on analyse les deux photons
suivant les directions H et I7, ils sortiront, avec une probabilité 1/2, soit tous les deux sur ﬁ, soit tous
les deux sur V . L'état [y > est dit intriqué, ou non séparable, du fait qu'il ne peut pas se mettre sous
la forme d'un produit |1y, >. Par exemple, un état séparable avec |, > = \/—17 (|Hy > +|V; >) et

I, >= \/% (IH; > +|V; >) donnerait 1,1, > =2 ([HyHy > +|V3Vy > +|HyVy > +[ViH, >).

Comment produire expérimentalement un état intriqué

Les expériences du groupe d'Aspect, en 1981-82 [1,2] utilisaient une désexcitation atomique en
cascade que je ne décrirai pas. Les sources paramétriques sont devenus la méthode standard depuis
1988. Dans un cristal adapte, des photons pompe de fréquence w, génerent des paires de photons
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dites signal et idler de méme fréquence w; = w; =- Mmais de polarisation orthogonale, en

respectant la conservation de I'énergie: le processus de conversion est aléatoire, mais un photon
pompe se convertit exactement en une paire de photons signal-idler. De plus, une propriété dite
d'accord de phase doit étre obtenue : la somme des vecteurs d'onde signal et idler doit étre égale au

vecteur d'onde pompe : k_; + H = E.

L'idée la plus évidente pour obtenir I'état |t > est d'envoyer les deux photons sur les deux voies
d'entrée d'une lame semi-transparente. On obtient alors I'état voulu lorsque les deux photons veulent
bien sortir chacun sur une des voies de la lame, ce qui se produit avec une probabilité 1/2. Dans ce cas,
les détecteurs enregistreront une coincidence qui sera prise en compte, alors que deux photons
sortant sur une méme voie conduiront a une détection unique (le détecteur ne distingue pas entre un
et deux photons arrivant ensemble), qui sera ignorée. L'expérience a été réalisée et conduit a une
violation des inégalités de Bell [3,4].

Pour éviter cette sélection des photons, I'expérience de Kwiatt et al., réalisée en 1995 et représentée
page suivante, utilise une propriété de l'accord de phase dans une configuration bien choisie : les

H 1 . |z 1 .
cercles du signal et de l'idler se coupent et on obtient I'état NG (|H1Vy > +|V1H, >) si on appelle

photon 1 celui provenant de l'intersection des faisceaux a gauche et photon 2 celui de l'intersection
des faisceaux a droite. On passe a |'état [ > par une simple rotation d'un quart de tour des
coordonnées du photon 2. Certes, on évite de sélectionner les paires de photons en coincidence, mais
on sélectionne spatialement les deux zones d'intérét de |'accord de phase, avec le gros intérét d'éviter
que les deux photons d'une paire arrivent parfois sur le méme détecteur.
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Expérience de Kwiatt et al., 1995 [5]



Détection du photon 1 seul

Intéressons nous tout d'abord a la probabilité de détecter le photon 1 suivant 8;. Puisqu'on ne mesure
pas le photon 2, on pourrait croire qu'il suffit d"enlever" le photon 2 dans la fonction décrivant [y >,

qui se réduirait a [P, >. On trouverait alors |y, >=\/_15 (cos@; +sinb,) |81 > +(cosB; —

sin6,) |6, >, soit une probabilité de détection suivant 8, :

P(6,) = % (cosB; +sin ;) 2 = cos? (91 — E) . Comme il est assez clair du fait de I'expression de
|1 >, le photon 1 serait polarisé a 45°.

Ce raisonnement est faux. Quoi qu'il arrive au photon 2, détecté ou non a une distance éventuellement
tres grande du photon 1, il faut continuer de le prendre en compte, ce qui donne :

Y >= % (cos 6, |6;H, > +sinb, |6,V, > —sinb, |8, H, > +cosO, |6, V, >),

Les deux premiers termes contribuent a une détection du photon 1 suivant 8; mais, a cause du photon
2, ne correspondent pas au méme état : il faut effectuer la somme de leurs carrés et non le carré de

leur somme. Soit P(6;) = % ((cos 6,) 2 + (sin6,) ?) = %

Le photon 1 est dépolarisé : il est détecté avec une probabilité 1/2 sur une des voies du polariseur,
quelle que soit la direction de ce polariseur.

Détection conjointe des photons 1 et 2

Pour trouver la probabilité conjointe de détecter les photons 1 et 2 derriere deux polariseurs orientés
respectivement suivant 8, et 8, il suffit d'écrire |t > dans la base 0_1), 0_2) :

1
[P >= NG ((cos B, cos B, + sinf,sinb,) |6,6, >

NG3

+ autres termes en |0,0,, >,10,,0, >,0,,05, >)
soit P(8, et 92):% cos?(0,—065), P(6;]0;)=cos?(6;—6,)
ou la deuxiéme égalité est une probabilité conditionnelle : | signifie "sachant".

Il'y a une trés forte corrélation entre les photons. Si 8; = 6,, les photons sortent toujours ensemble
sur les voies 84, 8, ou ensemble sur 8, ,0,,, et ceci méme si les photons sont tres éloignés et si les
orientations des polariseurs ont été définies tardivement, quand les photons ne pouvaient plus
communiquer avant leur détection. Il y a donc incontestablement un caractére non local a ce
formalisme. Cependant, peut-on en déduire dans les mots de Bell [6] que : "nous ne pouvons pas éviter
que l'intervention d'un coté ait une influence causale de I'autre"? L"'intervention" est une rotation du

polariseur 2. Pour déterminer I'""influence" du c6té 1, calculons la probabilité

P(6,| 6, )=cos? (91 -0, — g) = sin?(6, — 0, ), ce qui assure la relation déja vue

1

P(6,) = P(0,et 0;) + P(61et 6,,) = P(6,] 62)P(6;) + P(04] 6,,)P(6,,) = >



Il n'y a aucun moyen de s'apercevoir en 1 de la rotation du polariseur en 2, ce qui serait évidemment
contraire a la relativité restreinte. On ne peut que constater la corrélation des photons aprés coup, en
échangeant de I'information a une vitesse inférieure a celle de la lumiére. On peut résumer ces lignes

en écrivant :
[cos?8 + sin?6 = 1 | = La mécanique quantique et la relativité restreinte sont compatibles.

4) Inégalités de Bell

Malgré cette compatibilité, que reste-t-il de non local dans la mécanique quantique ? Son formalisme
est non local mais peut-il recouvrir une localité cachée dans l'intrication locale partagée par les photons
dans la source, avant leur séparation ? Cette question a été formalisée par John Bell de la facon
suivante. Notons S;=1 I'événement "sortie du photon 1 par la voie 8, " et S;=-1 I'événement "sortie du
photon 1 par la voie 8, ", et de méme S, pour le photon 2. Les photons sont créés ensemble dans le
cristal non linéaire, par annihilation d'un méme photon pompe, et ont pu, au moment de cette
création, procéder a un tirage au sort commun sur leur facon d'agir face a leur polariseur respectif : ils
partagent une variable aléatoire A tirée au sort avec une densité de probabilité p(1) et, pour cette
valeur A correspondant par exemple a une ligne du tableau du paragraphe 5, décident les valeurs de
S1, S, pour toutes les orientations de polariseur qu'ils rencontreront une fois séparés. On définit ainsi
deux fonctions S;(4,0;) et S,(4,6,). Il est crucial de comprendre qu'une fonction S; (4,8, 6,) est
interdite par la localité : le photon 1, au moment de traverser ou non son polariseur, ne dispose que
de la valeur de 4 et de I'orientation de son polariseur 8;. 6, lui est inconnu et a été fixé en dehors de
son cone temporel. Ce point difficile étant compris, calculons :

E(6,,0,) =< $, S, > = f p(2) dA S, (4 6) Sy(A, 65)

Et autorisons une rotation possible de chaque polariseur, soit deux autres orientations 6';,6';.
Définissons B comme :

B=E(64,6;) — E(91, 9'2) +E(6'1,6,) + E(0'1,60',)
Alors, dans I'hypothése de localité, on montre |B| < 2.

Cette forme des inégalités de Bell est due a Clauser, Horne, Shimony, Holt (CHSH) [7]. La démonstration
ne pose pas de probléeme particulier mais est quelque peu calculatoire. J'en présenterai une forme
légerement différente au paragraphe 6 et c'est cette forme dont je transcrirai la démonstration en
Annexe.

5) Violation des inégalités de Bell

Je commencerai ce paragraphe par une situation ol ces inégalités ne sont pas violées, alors qu'on
pourrait intuitivement attendre le contraire. Le choix le plus naturel des orientations est un couple
0, = 0, = 0, ou la corrélation est totale, et des rotations 8'; = 0', = %, qui assurent une corrélation
nulle entre, par exemple, 8, et 6',. Ce choix fait référence a I'article Einstein-Podolsky-Rosen [8] (EPR)

qui traitait des variables position et quantité de mouvement : une précision infinie sur la position d'une

particule entraine une incertitude maximale sur sa quantité de mouvement et vice-versa. Ici un photon

. s lep s . . , T .
polarisé H sort avec une probabilité 1/2 sur un polariseur orienté a 4 ou sur la voie orthogonale.



L'argument EPR devient donc : si le photon 2 est mesuré comme polarisé H, le photon 1 soumis a un
polariseur (H,V) sortira en H avec une probabilité de 1. Il existe donc un élément de réalité dans sa
polarisation horizontale. Or "sans perturber en aucune maniére le systeme 1", on peut tourner le
polariseur 2 et mesurer une polarisation diagonale D. Le photon 1 est donc aussi polarisé D, ce qui est
impossible car polarisé H. La mécanique quantique est donc incompléte, bien que "One would not
arrive at our conclusion if one insisted that two or more physical quantities can be regarded as
simultaneous elements of reality only when they can be simultaneously measured or predicted [...]
This makes the reality of P and Q depend upon the process of measurement carried on the first (pour
cet exposé, photon 2) system, which does not disturb the second system in any way. No reasonable
definition of reality could be expected to permit this". Pour John Bell [6], on doit conclure que tourner
le polariseur 2 a une influence causale sur la polarisation du photon 1. J'ai expliqué au paragraphe

précédent pourquoi je pensais cette interprétation excessive.

. . T \ \ . / .
Pour les orientations 6, = 6, =0, 6'; = 6, = un modele a variables cachées reproduit

parfaitement les résultats de la mécanique quantique, contrairement a ce qu'on pourrait attendre de
ce lien direct avec EPR. Les photons choisissent avec une probabilité 1/4, suivant la valeur de la variable

aléatoire 4, une des 4 lignes du tableau suivant :

$1(0:=0) $1(01=5) S2(6,=0) (0, =7)

1 1 1 1
1 -1 1 -1
-1 1 -1 1
1 -1 -1 -1

On calcule B= E(0,0) —E(O,%) +E(%,O) +E(%%) =1-0+0+1=2

L'inégalité CHSH est respectée, et d'ailleurs le calcul est le méme en variable cachée ou en mécanique
quantique.

Avant d'indiquer les orientations conduisant a une violation, calculons E(8;,6,) donné par la
mécanique quantique :

E(01,02)mg =< 5152 >

= (1.1)P(6,et ;) + (—1).(=1)P(6, et 0;,) + (1). (—1)P(B et 6,,) + (—1).(1)P(Oq et 6,)

= % .2.(cos?(6; — 6, ) —sin?(8; —0,)) = cos(2(68, —6,))
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On choisit alors ; = 0, 8, = 5,9’1 =5 0, = 5

soit Buo= £ (0,5) — £ (0,5) + E(5.5) + £ (5.5) =§—( f)+‘r+f_ 22 > 2
Notons le role de I'anti-corrélation (deuxieme terme), qui ne se retrouve pas dans le raisonnement
EPR. On montre sans difficulté que c'est la valeur de B maximale en fonction des orientations des

polariseurs.
6) Expériences d'Aspect

Les premieres expériences pour mesurer B, dues a Clauser [9], utilisaient des polariseurs a une seule
voie, ce qui ne permettait pas une utilisation directe des relations CHSH. Dans les expériences d'Aspect,
voir figure ci-dessous, les polariseurs a deux voies de sortie permettent la mesure des quatre flux de
coincidences entre les photons 1 et 2, soient, en notant + un photon sortant par 6, o0uf,,
correspondant a S=1 et - les photons pour S=-1 suivant 6;,0u 6O,,, les flux
R*T,R™7,R™",R™* exprimés en nombre de coincidences par seconde. La fenétre de coincidence a
une durée de 50 ns, dix fois la durée de vie de I'état intermédiaire de la désexcitation, ce qui permet
d'enregistrer toutes les vraies coincidences. On calcule alors la moyenne arithmétique :

Rt 4+ R~ — Rt~ —R~*
R**+ R~ + R+~ +R~+

E(91,92) =58=

On vérifie que le dénominateur représente le nombre total de coincidences, c'est a dire la division par
le nombre de répétitions de |'expérience constitutif d'une moyenne arithmétique, tandis que le
numérateur est la somme des valeurs de S; S, pour chaque répétition. On trouve des résultats en
excellent accord avec la mécanique quantique pour toutes les différences 8,—6,, donc, pour les
orientations adéquates, une violation des inégalités de Bell trés proche de la théorie. Dans la deuxieme

v, V.
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FIG. 2. Experimental setup. Two polarimeters I and
IO, in orientations @ and b, perform true dichotomic
measurements of linear polarization on photons v; and
vy. Each polarimeter is rotatable around the axis of
the incident beam. The counting electroniecs monitors
the singles and the coincidences.

Dispositif expérimental de la premiere expérience d'Aspect. Figure tirée de [1]



expérience [2], un dispositif électro-optique aiguillait les photons, disons 2, sur deux polariseurs
d'orientation différente, et ceci suffisamment tardivement pour étre en dehors du céne temporel du
photon 1 : la nature est non locale. Il faut cependant faire deux commentaires :

-"fair-sampling"assumption

Les rendements quantiques, c'est a dire les probabilités de détection d'un photon incident sur un
détecteur, étaient faibles, ce qui veut dire que la plupart des paires n'étaient pas détectées, ou un seul
photon était détecté ce qui ne donnait pas de coincidence. Il faut donc admettre que la statistique des
paires détectées est représentative de celle de I'ensemble des paires. On montre que cette hypothéese
peut étre levée si les rendements quantiques sont supérieurs a 0,83, ce qui est le cas dans les
expériences "loophole-free" de 2015 [10].

-Soustraction des coincidences accidentelles

Deux photons détectés en coincidence ne proviennent pas forcément d'une paire intriquée. Deux
paires peuvent fournir chacune un photon dans la fenétre de coincidence ou, plus rarement, un photon
détecté peut coincider avec une fausse détection due au bruit de fond du détecteur. Ces coincidences
accidentelles se répartissent également sur les quatre flux de coincidences et n'influent donc pas sur
le numérateur de E, en tout cas dans la limite d'un grand nombre d'événements. En revanche,
elles augmentent le dénominateur. Il est relativement aisé de connaitre leur nombre a partir des flux
de détection de photons seuls. Elles ont donc été soustraites du dénominateur, soit une soustraction
de 10 s pour un flux corrigé de 40 s, Si on n'effectue pas cette correction, les inégalités de Bell ne
sont pas ou sont peu violées dans les expériences d'Aspect. La premiere expérience ou cette
soustraction n'a pas été effectuée est celle du groupe de Zeilinger en 1998 [11], puis bien s(r dans les
expériences de 2015.

Soustraire les coincidences accidentelles revient a remplacer les produits d'intensités par les
covariances de ces intensités: par exemple I sur 6, est remplacé par I —< I} > et

LI par If I —< If ><IF >.0r,

- on verra en annexe que la démonstration des inégalités CHSH sous la forme Aspect, effectuée en
L L. I P oy
1986 [12] quatre ans aprés |'expérience, utilise 1L+ L

i i

| <1, i=1 ou 2. Ce n'est vrai que pour des

intensités positives, ce qui n'est pas forcément le cas de I;" =< I;" >. Dans une expérience idéale, on
a I + I =1 toujours, soit I;" + I7- <[} + I;7 >=0. Il n'y a plus d'inégalités de Bell si on utilise les
covariances.

- Nous avons montré [13] que, pour des états gaussiens tels que la fluorescence paramétrique utilisée
apres 1988, I'utilisation des covariances permet I'obtention de Buq quels que soient les flux, y compris
pour des flux si intenses qu'on détecte I'intensité et non les photons. Bien que ne connaissant pas les
propriétés exactes de |'état utilisé en 1981, je ne suis donc pas surpris de trouver un excellent accord
avec la théorie en soustrayant les coincidences accidentelles.

Curieusement, la "fair-sampling assumption" a été beaucoup plus commentée que la soustraction des
coincidences accidentelles. Il n'en reste pas moins que Zeilinger, bien connu aussi pour les expériences
de son groupe sur la téléportation quantique, a partagé le prix Nobel 2022 avec Clauser et Aspect.

7) Simulations stochastiques et variables cachées

Les simulations quantiques stochastiques, voir [14], semblent a premiére vue trés proches d'un modele
a variables cachées. Décrivons-en rapidement et sans équations le principe.



1) Al'entrée du cristal, on tire au sort, a partir de lois gaussiennes, les parties réelles et imaginaires des
champs électriques signal et idler sur chaque polarisation. Les champs obtenus représentent le vide
guantique, avec une énergie moyenne d'un demi-photon par mode (unité d'information) spatio-
temporel et par polarisation.

2) La propagation dans le cristal non linéaire, modélisée classiquement, entraine une forte corrélation
entre le signal et l'idler.

3) A la détection, la projection des champs sur les directions des polariseurs permet de calculer
I'intensité sur chaque voie de sortie.

En moyennant un trés grand nombre de répétitions de la simulation, on retrouve les résultats
théoriques, y compris en calculant des produits d'intensité et non leur covariance si les intensités sont
faibles.

En fait, on ne peut pas assimiler chaque répétition de la simulation a une expérience réelle car on doit
au final retrancher le demi-photon par mode injecté au départ, ce qui peut conduire a une intensité
négative. Seule la moyenne sur un grand nombre de répétitions a un sens physique précis, avec bien
sar une intensité qui doit étre positive. De plus, on détecte dans le monde réel des nombres entiers de
photons alors que l'intensité sur une répétition de la simulation peut prendre toute valeur, entiére ou
non entiére.

On peut assimiler une répétition de la simulation a une répétition de I'expérience seulement dans le
cas d'un tres grand nombre de photons par mode, ou a la fois la correction d'un demi-photon et la
discrétisation en nombres entiers de photons peuvent étre ignorées. Dans ce cas, la simulation
stochastique constitue bien un modeéle a variables cachées, ce qui n'est pas perturbant car, comme on
I'a vu, Bmq n'est obtenu qu'en utilisant les covariances, non sujettes aux inégalités de Bell.

8) Actualité de la non localité

Les photons intriqués ont été utilisés dans un grand nombre d'applications en optique quantique. Je
ne citerai que la téléportation quantique [15] et la cryptographie a I'aide de photons intriqués [16]
comme deux des premieres applications.

Merci a Stefan Neuwirth pour sa relecture attentive.
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Annexe : démonstration des inégalités de Bell dans leur version CHSH-Aspect

La normalisation des inégalités CHSH présente dans [1] et [2] n'apparait pas dans CHSH [7]. Elle a sans
doute été pensée par le groupe d'Aspect comme une simple moyenne arithmétique, comme expliqué
au paragraphe 6. Cependant, en cas de coincidence accidentelle, il peut y avoir plusieurs coincidences
dans une seule fenétre et il vaut mieux suivre la démonstration d'abord exposée dans [12], puis reprise
dans [17], que je transcris ici.

IF (A,6)-17 (1,67 _ IFA0)-17 (4,8)
1;—().,91')+1i_(ﬂ,9i) I;(4)
définition. I;(1) ne dépend pas de 6; car un photon sort toujours sur une voie du polariseur.

Soit  S;(1,6;) = , =1 ou 2, (D) =1(40)+17(1,6;) par

Les intensités étant positives, on a |S;| < 1.

Définissons : E(64,0,) = %ff(/l)dl S1(4,601)S2(4,8,), avec f(1) = p(W) (DI, (1), p(A) densité
de probabilité et N = [ f(1)dA.

E(04,6,) n'est donc plus égal a <SS, >, de fagon a faire apparaitre un facteur N de normalisation égal
au dénominateur utilisé dans [1] et [2].

<(1F (o0-17 (80))(13 (8)-17(62))>

D'ot E =
ou E(6:.6) <(f (o0+17 (00 (15 (82)+15 (62))>

, c'est bien le ratio de coincidences normalisé utilisé
dans [1] et [2].

Dans la démonstration qui suit, faire bien attention au role des valeurs absolues dans les inégalités.

E(6,,0,) — 5(91' 9,2)
=N*ffuma&aﬂg&uﬁguiSﬂAFJ&@ﬁEH

=N [ £ 5,205,000 )11 £ 5,050, 6,)

or [S;| <1=15:(4,601)5,(4,0,)| <1
d'ou
|E(61,6,) — E(6,,6",)
SN*ijMMlia&ﬁawawg]

+ N_lff(/"l)d/1 [1£5:(1,6')8:(4,6,)] = 2+ (E(8'1,6'2) + E(6'1,6,))

soit |B| < 2,aveC B = E(@l, 92) - E(91,9'2) + E(Q'l, 6,2) + E(9’1,92)



