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Introduction.

Actuation by stress and temperature as classical SMA BUT ALSO BY
MAGNETIC FIELD.
Response time around one millisecond for phase transformation in
comparison with classical SMA: one second.
Mainly studied Ni-Mn-Ga and also Fe-Pd.
For actuation mainly martensite platelets rearrangement



Some models of the thermo-magneto-mechanical behavior
of MSMAs

Two teams of specialists ; magnetism OR physics and strenghts of
materials.
A distinction between models is to be founded in the CHOICE OF THE
SCALE EXAMINED
O’Handley and Murray :two energies - mechanical -magnetism
Micromagnetism :changes of magnetic microstructure as a function of
magnetic field
Likhachev and Ullakko introduce magnetic anisotropy



Crystallography of Ni-Mn-Ga

Fig.: Crystallographic structures of Ni-Mn-Ga : a) Austenite L21 ; b) Modulated
quadratic martensite 5M) ;c)Modulated monoclinic martensite (7M) ;
d)Non-modulated quadratic martensite (NMT) .



A 5M- type martensite may be present in the form of three variants

Fig.: The three martensite variants with a transformation from a cubic lattice
into quadratic lattices.



Fig.: A schematic two-dimension situation : one cubic (left) and two martensite
variants M1et M2 side by side



Rearrangement and transformation

Fig.: Schematic visualization of a transformation and a martensitic rearrangement



Calculations of microstructures
Let Fk be the gradient tensor of the transformation of austenite A into the
variant k of martensite M

dx(M) = Fkdx0(A) (1)
and the Green - Lagrange tensor is defined by

Etr
k =

1
2
(tFkFk−1

)
=

1
2(U2

k−1) (2)
with the three variants for the cubic=⇒quadratic transformation

U1 =

 β 0 0
0 α 0
0 0 α

 , U2 =

 α 0 0
0 β 0
0 0 α

 U3 =

 α 0 0
0 α 0
0 0 β

 (3)

with α = a/a0,β = c/a0.
For the reorientation of the variant Mk into the variant Ml , the strain
tensor is :

Ere
kl =

1
2(U2

l −U2
k) (4)



Note that the interface between austenite and martensite can only exist in
the form of “twinned” martensite in front of austenite .

Fig.: Twinned Martensite forming an interface with austenite

In fact the CTM (Cristallographical Theory of Martensite) gives the
solution of the “twinning equation”

QUi−Uj = a⊗ n̂ (5)



Let us apply this to the cubic=⇒quadratic transformation .We shall begin
with variants 1 and 2.
The calculations are as follows :
Let R a rotation matrix of 180° around the ê axis défined by :

ê =
1√
2

 1
1
0

 (6)

It is easy to verify that RTU1R = U2 and we obtain :

1. a =

√
2(β 2−α2)

β 2 + α2

 −β

α

0

 , n̂ =
1√
2

 1
1
0

 (7)

2. a =

√
2(β 2−α2)

β 2 + α2

 −β

−α

0

 , n̂ =
1√
2

 1
−1
0

 (8)



The resolution of compatibility equation between A and (M1, M2)is
explained in the part “martensitic transformation”
For the Ni2-Mn-Ga α = a/a0=1.0188 et β = c/a0=0.9589 one obtains
λ = .3083 and
NFor M1 =⇒M2

Ere
12 =

1
2(U2

2−U2
1) = diag(0.0593,−0.0593,0) (9)

NFor A =⇒ (M1,M2)
Etr =

1
2(U2

tw−1) (10)

with Utw=λU2 + (1−λ )U1and finally
Etr = diag(−0.0224,0.0004,0.0190)



Model of magneto- thermo-mechanical behavior of MSMA
single crystal

Gibbs free energy (Thermodynamic potential chosen)

G(Σ,T ,h,z0,z1...zn,,α,θ ,αA)=Gchem(T ,z0) + Gtherm(T )
+Gmeca(Σ,z0,z1...zn,) + Gmag (T ,h,z0,z1...zn,,α,θ ,αA)

(11)

k=3

∑
k=0

zk = 1 (12)

Σ stress tensor , h = Hxapplied magnetic field, T temperature z0
austenite fraction zk variant Mk fraction , α Weiss domain proportion
within the REV of a martensite variant ; αA Weiss domain proportion of A.



REV

Fig.: Representative Elementary Volume of two variants M1 and M2 (z1 = z ,
z2 = 1− z).



REV under magnetic field H

Fig.: Evolution of the Representative Elementary Volume under the influence of a
magnetic field .



Chemical energy expression

This energy relates the latent heat associated with an A =⇒M. phase
transformation :

Gchem (T , z0) =
(

uA
0 −TsA

0

)
z0 +

(
uM

0 −TsM
0

)
(1−z0) = uM

0 −TsM
0 +Πf

0 (T )

(13)
with Πf

0(T ) =4u−T4s
and 4u = uA

0 −uM
0 ;4s = sA

0 − sM
0

this formulation is the same than classical SMAs.



Thermal energy expression

Under the specific heats are the same for austenite and martensite , with
the definition:

Cp =−T d2Gtherm
dT 2 (14)

The thermal energy is obtained under double integration :

Gtherm = Cp

[
(T −T0)−TLn

(
T
T0

)]
(15)



Mechanical energy expression
For a single crystal made of the mother phase A and n martensite variants,
the Gmech expression can be chosen as :

ρG(Σ,T ,z0,z1, ...,zn) =−Σ :
k=3

∑
k=0

zkEtr
k −

1
2Σ : MΣ + φit(z0,z1,...zn) (16)

.
with:

φit = Az0(1− z0) +
1
2

n

∑
k=1

n

∑
l=1

Hklzkzl (17)

with l différent from k and z global martensite fraction :

z =
n

∑
k=1

zk = 1− z0 (18)

In the following, we shall limit ourselves to the case where h = Hxet and
an uniaxial compression in the direction y

Σ = diag (0,σ ,0) (19)



Figure: Magneto-mechanical sollicitation of a Ni-Mn-Ga single crystal (phase
transformation cubic-quadratic ).

In this simple case ,the mechanical energy expression is reduced to:

ρGmeca(σ , z0 ,z1 ,z2 z3 ) =−σ

2
[
(z1 + z3)(α2−1) + z2(β 2−1)

]
−1

2
σ2

EF + Az0(1− z0) + K (z1z2 + z2z3 + z3z1)
(20)



with EF the Young modulus and considering that the interactions between
the martensite variants have the same weight.
In addition ,a restriction is to consider:

k=3

∑
k=0

zk = 1 (21)

This means that among the four volume fractions, only three are
independent.



Magnetic energy expression
The expression of ρGmag (H) will be as follows :

ρGmag (H) =−
∫ H

0
µ0mdH (22)

We shall use the notations m1, m2 m3 the magnetizations of the three
martensite variants M1,M2 M3 and m0 the magnetisation of l’austenite
Magnetization of martensite :axis of easy aimantation :

m1(H) = ms(2α(H)-1) (23)

where ms is the saturation magnetization α ∈ [0 ,1 ]represents the
proportion of the Weiss domain.
Thus α is chosen as a linear function of H

(2α(H)-1) =
χaH
ms

(24)

with m1(H) = χaH.



Magnetization of martensite :axis of difficult aimantation.
Magnetization along the axis of difficult aimantation is chosen as
corresponding to a rotation of the magnetization within the variant in
question. On the basis of the REV choice made above :

m2(H) = m3(H) = mssin(θ (H)) (25)

where θ ∈
[
−π

2 , π

2
]
represents the angle of rotation of the magnetization.

We shall choose sin(θ (H)) as linear in H in the form :

sin(θ (H)) =
χtH
ms

(26)

This is to say m2=m3=χtH.



Magnetization of austenite
With an operational temperature lower than the Curie temperature of the
material,the behavior is considered to be similar to that of variant M1

m0(H) = ms(2αA(H)-1) (27)

where αA ∈ [0 ,1 ]represents the proportion of the Weiss domain in the
austenite. αA is chosen as a linear function of H

(2αA(H)-1) =
χAH
ms

(28)



Mixing rule

The mixture rule then gives the global magnetization of the material :

m(H) =
k=3

∑
k=0

zkMk (29)

m(H) = ms (z0(2αA(H)-1)+ z1(2α(H)-1)+ (z2 + z3)sin(θ (H))) (30)

The curves given by Likhachev et al show that when z=1 ; m=M is linear
in H0=H with slope χt and for z=0 ;m linear in H with slope χa.
In this two-variants model (z3=0), z1=z ; z2=1-z ) we write :

m = mx = χaHz + χtH (1− z) (31)



Fig.: Magnetization curves for different fractions z of variant 1( two variants
model ; 1 and 2) model :lines ; experiments (o)(Experiments Likhachev et al. ).



As it was performed in Gauthier thesis (2007) , the Gmag expression is
established :

ρGmag (H,z0,z1,z2,z3,α,θ ,αA) = (32)

−µ0ms

[
z1((2α−1)H− ms

2χa
(2α−1)2) + (z2 + z3)

(
sin (θ)H− ms

2χt
sin2 (θ)

)]
(33)

−µ0ms

[
z0((2αA−1)H− ms

2χA
(2αA−1)2)

]
(34)

The experimental curves observation shows that ms is not constant but
rather depends on the temperature .For ferromagnetic materials the Weiss
theory gives the dependence of ms with T by an implicit equation delivered
by Zuo et al.

ms(T )

m0
s

= tanh
(

ms(T )

m0
s

Tc
T

)
(35)

where Tc is the Curie temperature m0
s the magnetization at 0°K.In order

to simplify the calculations, the parameters m0
s and Tcwill be taken to be

identical for the austenite and the martensite although in reality they are
slighty different.



Free energy expression
For a single crystal with an austenitic phase and three martensite variants
for a transformation cubic A=⇒quadratic Mi) under a thermo-magneto-
mechanic loading ,the Gibbs free energy expression can be written as

with βa = α et βc = β

This G expression is a little complicated but can be subdivised into a
number of specific situations( purely magnetic or mechanical or thermal
loading ).



Clausius-Duhem inequality
Thermodynamic forces

N E =−ρ
∂G
∂σ

=
σ

EF +
1
2
[
(z1 + z3)(α

2−1) + z2(β
2−1)

]
(36)

N µ0m =−ρ
∂G
∂H = µ0ms [z0(2αA−1) + z1(2α−1) + (z2 + z3)sin(θ)] (37)



A magneto-thermal effect is present in the entropy expression due to the
dependence with temperature of ms .
The thermodynamical forces associated to variables α , αA et θ are taken
equal to zero,i.e.

ρ
∂G
∂α

= 0 , ρ
∂G
∂αA

= 0 , ρ
∂G
∂θ

= 0 (38)

The free energy expression choice confirms that purely magnetic behavior
is considered to be reversible.
Effectively , the magnetization curves measured by Heczko et col on two
samples (one at stress free state and the other under 3 MPa) don’t exhibit
hysteresis.

Fig.: Magnetization curves mesuread in the directions of magnetization : easy (
sample at stress free state ), difficult (sample under 3 MPa compression stress) .



Finally, the thermodynamic forces associated at the austenite fraction and
martensite variants ones are writtten

Nπ
f
0 =−ρ

∂G
∂z0

=
−4U−T4S−A(1−2z0)

+µ0ms
[
(2αA−1)H− ms

2χA
(2αA−1)2

] (39)

Nπ
f
1 =−ρ

∂G
∂z1

=

σ

2
(
α2−1

)
−K (z2 + z3)

+µ0ms(T )
[
((2α−1)H− ms

2χa
(2α−1)2)

] (40)

Nπ
f
2 =−ρ

∂G
∂z2

=

σ

2
(
β 2−1

)
−K (z1 + z3)

+µ0ms(T )
(

sin (θ)H− ms
2χt

sin2 (θ)
) (41)

Nπ
f
3 =−ρ

∂G
∂z3

=

σ

2
(
α2−1

)
−K (z1 + z2)

+µ0ms(T )
(

sin (θ)H− ms
2χt

sin2 (θ)
) (42)



The behavior is irreversible , so the Clausius-Duhem inequality can be
written as :

dD =−ρdG−µ0mdH− εdσ − sdT ≥ 0 (43)

where dD constitutes the dissipation increment . Its expression can be
written as :

dD =
3

∑
i=0

π
f
i dzi ≥ 0 avec

3

∑
i=0

dzi = 1 (44)



Kinetics of phase transformation or reorientation
Example of 2 martensite variants :

Fig.: Representation of a 2D network of two martensite variants induced by an
uniaxial compression.



Fig.: Morphology of surface for a Ni-Mn-Ga plate in white :the original variant ;
in black : the variant created by uniaxial compression )



If a sample contains two martensite variants M1 and M2,during the thermal
evolution. Let z = z1 = 1− z2 and the Clausius -Duhem inequality becomes

dD = π
f
1 dz1 + π

f
2 dz2 ≥ 0 (45)

dD = (π
f
1 −π

f
2 )dz ≥ 0 (46)

The reorientation begins when (π f
1 −π f

2 )≥ πcr (T) for the path (a) and
when (π f

1 −π f
2 )≤−πcr (T) for the path (b). After the linitiation of the

reorientation, the behavior is modeled with the following kinetic :

π̇1
f − π̇2

f = λ ż avec ż = ż1 =−ż2 (47)



One can take λ as a constant or the λ value can be taken as dependent of
the anterior deformation . Hence, the concept of the memory point is
introduced and one makes the distinction between internal and external
loops.

Fig.: Thermodynamical force as function martensite fraction z1of M1.



For πcr (T) function of temperature,a linear dependence is chosen

πcr (T ) = π
0
cr + kcr

(
A0

s −T
)

(48)

Equivalence between the actions of the magnetic field H and the stress σ

De façon classically, reorientation occurs when the thermodynamic force
π f Freaches the values πcr .In the two variants model M1 and M2

π
f F(σ ,H,z = 0) = πcr (49)

with

πcr = σγ−K12−µ0m2
s

(
(1−2α)sinθ

χt
+

(2α−1)2

2χa
+

sin2θ

2χt

)
(50)



Three situations must be examined
N Zone I : no saturation in α et θ

NZoneII : saturation in α , not in θ

NZone III : saturation in α et θ

The figure allows the comparison between the measured values and the
predictions with :
µ0ms=0.65 T, χt=0.82, χa=4, πcr+K12=2.104Pa, γ = 0.055

Fig.: Borderline between σ and H for the initiation of reorientation
M2 =⇒M1.solid line : simulation ;(x) experimental points .



Generalization to the three martensite variants and the austenitic phase .
We generalize the concept of critical force πcr (T ) and kinetics to the three
martensite variants and to the austenitic phase.The figure represents the
phase state and the kinetics associated . cĳ represents the transformation
rate from Mi to Mj and c0j from A to Mj

Fig.: Schematic representation of the kinetics.



and the following relations are verified

ż0 = c10 + c20 + c30− c01− c02− c03 (51)

ż1 = c01 + c21 + c31− c10− c12− c13 (52)

ż2 = c02 + c12 + c32− c20− c21− c23 (53)

ż3 = c03 + c13 + c23− c30− c31− c32 (54)

with the cĳ défined by
cĳ = 0 if π f

j −π f
i ≤ πcr (T ) or zi = 0

cĳ = 1
λ

(
π̇ f

j − π̇ f
i

)
otherwise

Different values of λ have to take into account : λA for the transformation
A⇒Mi and λM for Mi ⇒Mj .



Identification of parameters
The material parameters are strongly dependent of the alloy composition .
Its identification need specific measurements as for example the X-ray
measurements for lattice parametersc, the DSC (differential scanning
calorimétry) for phase transformation temperatures. measurements of
susceptibitly , Curie temperature and last compression tests in order to
know the Young modulus and hardening
“Differential scanning calorimetry”
La DSC gives us . the four phase transformation temperatures (at stress
free state) : M0

f M0
s ,A0

s ,A0
f .To begin with, the hysteresis curve area is

equal to −4U..As the model show by verifying A0
f −A0

s 'M0
s −M0

f one
can obtain :

4S =
24U

A0
s + M0

s
(55)

A =
−4S

(
A0

s −M0
s
)

2 (56)

λA =−4S(A0
f −M0

s ) (57)



Crystallographic measurements :
The lattice parameters a0 ,a et c are obtained with X-rays
Magnetic measurements :
The curves of m as a function of H for different temperatures may serve to
identify Tc ,m0

s χa χt χA.
Mechanical measurements :
The curves of reorientation at different temperatures lower than A0

s , can
be taken in order to obtain πcr (T ) , λM et EF.
The selected parameters are reported in table 1



Reliability of the model

Fig.: Algorithm for simulating the general behavior of an MSMA.



Fig.: Inputs and outputs from the digital simulation.



La figure presents the l’evolution of the déformation εand volume fractions
of variants zi with the température T . The deformation is around 2%
when the magnetic field is applied, and -4% under the influence of
compressive stress. Naturally, there is not deformation in the absence of
stress and magnetic field and at low temperature the fractions zi i = 1,2,3
are equal (at 1/3).

Fig.: Results of our simulation of a thermal action with and without magnetic
field or stress.



Fig.: Simulation of the mechanical action at high temperature
(pseudo-elasticity) :T=320K



Fig.: Mechanical action at low temperature giving rise to the martensite
reorientation under H = 800kA/m.



Fig.: Magnetization curves for different isotherms .



Fig.: Evolution of the deformation ε with the magnetic field H for different levels
of applied stress.



Fig.: Evolution of the deformation and magnetization under a fixed stress
σ =−1MPa.Experiments performed by Straka et al..



Fig.: .Evolution of the deformation and magnetization under a fixed stress
σ =−1MPa.Modeling of experiments performed by Straka et al.



Fig.: Photograph of the “ Push-Pull” actuator.



Fig.: Principle of operation of Push-Pull actuator.



Fig.: Photograph of three films deposited at 298 °K and annealed during 21.6 ks
and 36 ks at 873 K respectively. (The arrows indicate the directions of rolling).


