Chap 6 : Magnetic Shape-memory Alloys Behavior

Christian Lexcellent ,DMA-FEMTO Besançon

March 27, 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction.

Actuation by stress and temperature as classical SMA BUT ALSO BY MAGNETIC FIELD.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Response time around one millisecond for phase transformation in comparison with classical SMA: one second.

Mainly studied Ni-Mn-Ga and also Fe-Pd.

For actuation mainly martensite platelets rearrangement

Some models of the thermo-magneto-mechanical behavior of MSMAs

Two teams of specialists ; magnetism OR physics and strenghts of materials.

A distinction between models is to be founded in the CHOICE OF THE SCALE EXAMINED

O'Handley and Murray :two energies - mechanical -magnetism Micromagnetism :changes of magnetic microstructure as a function of

magnetic field

Likhachev and Ullakko introduce magnetic anisotropy

Crystallography of Ni-Mn-Ga

FIG.: Crystallographic structures of Ni-Mn-Ga : a) Austenite L2₁; b) Modulated quadratic martensite 5M);c)Modulated monoclinic martensite (7M); d)Non-modulated quadratic martensite (NMT).

A 5M- type martensite may be present in the form of three variants

FIG.: The three martensite variants with a transformation from a cubic lattice into quadratic lattices.

 $\rm Fig.:$ A schematic two-dimension situation : one cubic (left) and two martensite variants $M_1et~M_2$ side by side

Rearrangement and transformation

FIG.: Schematic visualization of a transformation and a martensitic rearrangement

Calculations of microstructures

Let \mathbf{F}_k be the gradient tensor of the transformation of austenite A into the variant k of martensite M

$$d\mathbf{x}(\mathbf{M}) = \mathbf{F}_{\mathbf{k}} d\mathbf{x}_0(\mathbf{A}) \tag{1}$$

and the Green - Lagrange tensor is defined by

$$\mathbf{E}_{\mathbf{k}}^{\mathrm{tr}} = \frac{1}{2} \left({}^{t} \mathbf{F}_{\mathrm{k}} \mathbf{F}_{\mathrm{k}} - \mathbf{1} \right) = \frac{1}{2} (\mathbf{U}_{\mathbf{k}}^{2} - \mathbf{1})$$
(2)

with the three variants for the cubic \Longrightarrow quadratic transformation

$$\mathbf{U}_{1} = \begin{bmatrix} \beta & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}, \ \mathbf{U}_{2} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \alpha \end{bmatrix} \ \mathbf{U}_{3} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{bmatrix}$$
(3)

with $\alpha = a/a_0, \beta = c/a_0$. For the reorientation of the variant M_k into the variant M_l , the strain tensor is :

$$\mathbf{E}_{kl}^{re} = \frac{1}{2} (\mathbf{U}_l^2 - \mathbf{U}_k^2) \tag{4}$$

Note that the interface between austenite and martensite can only exist in the form of "twinned" martensite in front of austenite .

 $\ensuremath{\operatorname{FIG.:}}$ Twinned Martensite forming an interface with austenite

In fact the CTM (Cristallographical Theory of Martensite) gives the solution of the "twinning equation"

Let us apply this to the cubic \Longrightarrow quadratic transformation .We shall begin with variants 1 and 2.

The calculations are as follows :

Let R a rotation matrix of 180° around the \hat{e} axis défined by :

$$\hat{\mathbf{e}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \tag{6}$$

It is easy to verify that $\boldsymbol{\mathsf{R}}^{\mathsf{T}}\boldsymbol{\mathsf{U}}_1\boldsymbol{\mathsf{R}}=\boldsymbol{\mathsf{U}}_2$ and we obtain :

1.
$$\mathbf{a} = \frac{\sqrt{2}(\beta^2 - \alpha^2)}{\beta^2 + \alpha^2} \begin{pmatrix} -\beta \\ \alpha \\ 0 \end{pmatrix}, \ \hat{\mathbf{n}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 (7)
2. $\mathbf{a} = \frac{\sqrt{2}(\beta^2 - \alpha^2)}{\beta^2 + \alpha^2} \begin{pmatrix} -\beta \\ -\alpha \\ 0 \end{pmatrix}, \ \hat{\mathbf{n}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ (8)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The resolution of compatibility equation between A and (M_1, M_2) is explained in the part "martensitic transformation" For the Ni_2 -Mn-Ga $\alpha = a/a_0 = 1.0188$ et $\beta = c/a_0 = 0.9589$ one obtains $\lambda = .3083$ and \blacktriangle For $M_1 \Longrightarrow M_2$

$$\mathbf{E}_{12}^{\text{re}} = \frac{1}{2} (\mathbf{U}_2^2 - \mathbf{U}_1^2) = diag(0.0593, -0.0593, 0)$$
(9)

 $\blacktriangle For A \Longrightarrow (M_1, M_2)$

$$\mathbf{E}^{\mathsf{tr}} = \frac{1}{2} (\mathbf{U}_{\mathsf{tw}}^2 - \mathbf{1}) \tag{10}$$

with $\mathbf{U}_{tw} = \lambda \mathbf{U}_2 + (1 - \lambda)\mathbf{U}_1$ and finally $\mathbf{E}^{tr} = diag(-0.0224, 0.0004, 0.0190)$

Model of magneto- thermo-mechanical behavior of MSMA single crystal

Gibbs free energy (Thermodynamic potential chosen)

$$G(\boldsymbol{\Sigma}, \boldsymbol{T}, \mathbf{h}, z_0, z_1 \dots z_{n,}, \alpha, \theta, \alpha_A) = G_{chem}(\boldsymbol{T}, z_0) + G_{therm}(\boldsymbol{T}) + G_{meca}(\boldsymbol{\Sigma}, z_0, z_1 \dots z_{n,}) + G_{mag}(\boldsymbol{T}, \mathbf{h}, z_0, z_1 \dots z_{n,}, \alpha, \theta, \alpha_A)$$
(11)

$$\sum_{k=0}^{k=3} z_k = 1$$
 (12)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Σ stress tensor , $\mathbf{h} = \mathbf{H}\mathbf{x}$ applied magnetic field, T temperature z_0 austenite fraction z_k variant M_k fraction , α Weiss domain proportion within the REV of a martensite variant; α_A Weiss domain proportion of A.

REV

FIG.: Representative Elementary Volume of two variants M_1 and M_2 ($z_1 = z$, $z_2 = 1 - z$).

REV under magnetic field H

 $\ensuremath{\mathbf{FIG.:}}$ Evolution of the Representative Elementary Volume under the influence of a magnetic field .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

This energy relates the latent heat associated with an $A \Longrightarrow M$. phase transformation :

$$\begin{aligned} G_{chem}(T, z_0) &= \left(u_0^A - Ts_0^A\right) z_0 + \left(u_0^M - Ts_0^M\right) (1 - z_0) = u_0^M - Ts_0^M + \Pi_0^f(T) \end{aligned} \tag{13}$$
with $\Pi_0^f(T) &= \bigtriangleup u - T \bigtriangleup s$
and $\bigtriangleup u &= u_0^A - u_0^M; \bigtriangleup s = s_0^A - s_0^M$
this formulation is the same than classical SMAs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thermal energy expression

Under the specific heats are the same for austenite and martensite , with the definition:

$$C_p = -T \frac{d^2 G_{therm}}{dT^2} \tag{14}$$

(ロ)、(型)、(E)、(E)、 E) の(()

The thermal energy is obtained under double integration :

$$G_{therm} = C_p \left[(T - T_0) - TLn \left(\frac{T}{T_0} \right) \right]$$
(15)

Mechanical energy expression

For a single crystal made of the mother phase A and n martensite variants, the G_{mech} expression can be chosen as :

$$\rho G(\mathbf{\Sigma}, T, z_0, z_1, ..., z_n) = -\mathbf{\Sigma} : \sum_{k=0}^{k=3} z_k \mathbf{E}_k^{tr} - \frac{1}{2} \mathbf{\Sigma} : \mathbf{M} \mathbf{\Sigma} + \phi_{it}(z_0, z_{1,..., z_n})$$
(16)

with:

$$\phi_{it} = Az_0(1-z_0) + \frac{1}{2}\sum_{k=1}^n \sum_{l=1}^n H_{kl} z_k z_l$$
(17)

with l différent from k and z global martensite fraction :

$$z = \sum_{k=1}^{n} z_k = 1 - z_0 \tag{18}$$

In the following, we shall limit ourselves to the case where $\mathbf{h} = H\mathbf{x}$ et and an uniaxial compression in the direction \mathbf{y}

$$\boldsymbol{\Sigma} = diag(0, \sigma, 0) \quad \text{and } \boldsymbol{\varepsilon} \in [19]_{\odot}$$

Figure: Magneto-mechanical sollicitation of a Ni-Mn-Ga single crystal (phase transformation cubic-quadratic).

In this simple case ,the mechanical energy expression is reduced to:

$$\rho G_{meca}(\sigma, z_0, z_1, z_2 z_3) = -\frac{\sigma}{2} \left[(z_1 + z_3) (\alpha^2 - 1) + z_2 (\beta^2 - 1) \right] -\frac{1}{2} \frac{\sigma^2}{E^{\star}} + A z_0 (1 - z_0) + K (z_1 z_2 + z_2 z_3 + z_3 z_1)$$
(20)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with E^{\star} the Young modulus and considering that the interactions between the martensite variants have the same weight. In addition ,a restriction is to consider:

$$\sum_{k=0}^{k=3} z_k = 1 \tag{21}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This means that among the four volume fractions, only three are independent.

Magnetic energy expression

The expression of $\rho G_{mag}(H)$ will be as follows :

$$\rho G_{mag}(H) = -\int_0^H \mu_0 m dH \tag{22}$$

We shall use the notations m_1 , $m_2 m_3$ the magnetizations of the three martensite variants $M_1, M_2 M_3$ and m_0 the magnetisation of l'austenite Magnetization of martensite :axis of easy aimantation :

$$m_1(H) = m_s(2\alpha(H)-1) \tag{23}$$

where $m_s is$ the saturation magnetization $\alpha \in [0,1]$ represents the proportion of the Weiss domain.

Thus α is chosen as a linear function of H

$$(2\alpha(H)-1) = \frac{\chi_a H}{m_s} \tag{24}$$

with $m_1(H) = \chi_a H$.

Magnetization of martensite :axis of difficult aimantation. Magnetization along the axis of difficult aimantation is chosen as corresponding to a rotation of the magnetization within the variant in question. On the basis of the REV choice made above :

$$m_2(H) = m_3(H) = m_s sin(\theta(H))$$
(25)

where $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ represents the angle of rotation of the magnetization. We shall choose $sin(\theta(H))$ as linear in H in the form :

$$\sin(\theta(H)) = \frac{\chi_t H}{m_s}$$
(26)

This is to say $m_2 = m_3 = \chi_t H$.

Magnetization of austenite

With an operational temperature lower than the Curie temperature of the material, the behavior is considered to be similar to that of variant M_1

$$m_0(H) = m_s(2\alpha_A(H)-1) \tag{27}$$

where $\alpha_A \in [0,1]$ represents the proportion of the Weiss domain in the austenite. α_A is chosen as a linear function of H

$$(2\alpha_A(H)-1) = \frac{\chi_A H}{m_s}$$
(28)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mixing rule

The mixture rule then gives the global magnetization of the material :

$$m(H) = \sum_{k=0}^{k=3} z_k M_k$$
(29)

$$m(H) = m_s \left(z_0(2\alpha_A(H)-1) + z_1(2\alpha(H)-1) + (z_2 + z_3)sin(\theta(H)) \right)$$
(30)

The curves given by Likhachev et al show that when z=1; m=M is linear in $H_0=H$ with slope χ_t and for z=0; m linear in H with slope χ_a . In this two-variants model ($z_3=0$), $z_1=z$; $z_2=1-z$) we write :

$$m = m_x = \chi_a H z + \chi_t H (1 - z) \tag{31}$$

FIG.: Magnetization curves for different fractions z of variant 1(two variants model; 1 and 2) model :lines; experiments (o)(Experiments Likhachev et al.).

As it was performed in Gauthier thesis (2007) , the G_{mag} expression is established :

$$\rho G_{mag}(H, z_0, z_1, z_2, z_3, \alpha, \theta, \alpha_A) =$$
(32)

$$-\mu_0 m_s \left[z_1 ((2\alpha - 1)H - \frac{m_s}{2\chi_a} (2\alpha - 1)^2) + (z_2 + z_3) \left(sin(\theta)H - \frac{m_s}{2\chi_t} sin^2(\theta) \right) \right]$$
(33)

$$-\mu_0 m_s \left[z_0 ((2\alpha_A - 1)H - \frac{m_s}{2\chi_A} (2\alpha_A - 1)^2) \right]$$
(34)

The experimental curves observation shows that m_s is not constant but rather depends on the temperature .For ferromagnetic materials the Weiss theory gives the dependence of m_s with T by an implicit equation delivered by Zuo et al.

$$\frac{m_s(T)}{m_s^0} = tanh\left(\frac{m_s(T)}{m_s^0}\frac{T_c}{T}\right)$$
(35)

where T_c is the Curie temperature m_s^0 the magnetization at 0°K.In order to simplify the calculations, the parameters m_s^0 and T_c will be taken to be identical for the austenite and the martensite although in reality they are slighty different.

Free energy expression

For a single crystal with an austenitic phase and three martensite variants for a transformation cubic $A \Longrightarrow$ quadratic M_i) under a thermo-magnetomechanic loading ,the Gibbs free energy expression can be written as

$$\begin{split} &\rho G(H,\sigma,T,z_0,z_1,z_2,z_3,\alpha,\theta,\alpha_A) = \\ &u_0^M - Ts_0^M + z_0(\Delta U - T\Delta S) \\ &+ C_P \left[\left(T - T_0\right) - T \cdot \ln\left(\frac{T}{T_0}\right) \right] \\ &- \frac{\sigma}{2} \left((z_1 + z_3) \left(\beta_a^2 - 1\right) + z_2 \left(\beta_c^2 - 1\right) \right) \\ &- \frac{1}{2} \frac{\sigma^2}{E} + Az_0(1 - z_0) + K (z_1 z_2 + z_1 z_3 + z_2 z_3) \\ &- \mu_0 m_s(T) \left[z_1 \left((2\alpha - 1)H - \frac{m_s(T)}{2\chi_4} (2\alpha - 1)^2 \right) \\ &+ (z_2 + z_3) \left(\sin(\theta)H - \frac{m_s(T)}{2\chi_4} (\sin(\theta))^2 \right) \\ &+ z_0 \left((2\alpha_A - 1)H - \frac{m_s(T)}{2\chi_A} (2\alpha_A - 1)^2 \right) \right] \end{split}$$

with
$$\sum_{k=0}^{3} z_k = 1$$

with $\beta_a = \alpha$ et $\beta_c = \beta$ This G expression is a lit

This G expression is a little complicated but can be subdivised into a number of specific situations(purely magnetic or mechanical or thermal loading).

Clausius-Duhem inequality

Thermodynamic forces

$$\blacktriangle E = -\rho \frac{\partial G}{\partial \sigma} = \frac{\sigma}{E^{\bigstar}} + \frac{1}{2} \left[(z_1 + z_3)(\alpha^2 - 1) + z_2(\beta^2 - 1) \right]$$
(36)

$$\Delta \mu_0 m = -\rho \frac{\partial G}{\partial H} = \mu_0 m_s [z_0(2\alpha_A - 1) + z_1(2\alpha - 1) + (z_2 + z_3)sin(\theta)] \quad (37)$$

•
$$\rho s = -\frac{\partial \rho G}{\partial T} = s_o^M + z_o \Delta S + C_p \ln\left(\frac{T}{T_o}\right)$$

+ $\mu_0 \frac{dm_s}{dT} H \left[z_1(2\alpha - 1) + (z_2 + z_3)\sin(\theta) + z_0(2\alpha_A - 1)\right]$
- $2\mu_0 m_s(T) \frac{dm_s}{dT} \left[z_1 \frac{(2\alpha - 1)^2}{2\chi_a} + (z_2 + z_3)\frac{\sin^2(\theta)}{2\chi_t} + z_0 \frac{(2\alpha_A - 1)^2}{2\chi_A}\right]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A magneto-thermal effect is present in the entropy expression due to the dependence with temperature of m_s .

The thermodynamical forces associated to variables α , α_A et θ are taken equal to zero, i.e.

$$\rho \frac{\partial G}{\partial \alpha} = 0, \, \rho \frac{\partial G}{\partial \alpha_A} = 0, \, \rho \frac{\partial G}{\partial \theta} = 0 \tag{38}$$

The free energy expression choice confirms that purely magnetic behavior is considered to be reversible.

Effectively , the magnetization curves measured by Heczko et col on two samples (one at stress free state and the other under 3 MPa) don't exhibit hysteresis.

Finally, the thermodynamic forces associated at the austenite fraction and martensite variants ones are writtten

$$\blacktriangle \pi_0^f = -\rho \frac{\partial G}{\partial z_0} = \frac{-\bigtriangleup U - T\bigtriangleup S - A(1 - 2z_0)}{+\mu_0 m_s \left[(2\alpha_A - 1)H - \frac{m_s}{2\chi_A} (2\alpha_A - 1)^2 \right]}$$
(39)

$$\blacktriangle \pi_{1}^{f} = -\rho \frac{\partial G}{\partial z_{1}} = \frac{\frac{\sigma}{2} (\alpha^{2} - 1) - K (z_{2} + z_{3})}{+\mu_{0} m_{s}(T) \left[((2\alpha - 1) H - \frac{m_{s}}{2\chi_{a}} (2\alpha - 1)^{2}) \right]}$$
(40)

$$\blacktriangle \pi_2^f = -\rho \frac{\partial G}{\partial z_2} = \frac{\frac{\sigma}{2} \left(\beta^2 - 1\right) - K \left(z_1 + z_3\right)}{+\mu_0 m_s(T) \left(\sin(\theta) H - \frac{m_s}{2\chi_t} \sin^2(\theta)\right)}$$
(41)

$$\blacktriangle \pi_3^f = -\rho \frac{\partial G}{\partial z_3} = \frac{\frac{\sigma}{2} (\alpha^2 - 1) - K(z_1 + z_2)}{+\mu_0 m_s(T) \left(\sin(\theta) H - \frac{m_s}{2\chi_t} \sin^2(\theta) \right)}$$
(42)

The behavior is irreversible , so the Clausius-Duhem inequality can be written as :

$$dD = -\rho dG - \mu_0 m dH - \varepsilon d\sigma - s dT \ge 0$$
(43)

where dD constitutes the dissipation increment . Its expression can be written as :

$$dD = \sum_{i=0}^{3} \pi_i^f \, dz_i \ge 0 \text{ avec } \sum_{i=0}^{3} dz_i = 1$$
(44)

Kinetics of phase transformation or reorientation Example of 2 martensite variants :

FIG.: Representation of a 2D network of two martensite variants induced by an uniaxial compression.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 ${\rm FIG.:}$ Morphology of surface for a Ni-Mn-Ga plate in white :the original variant ; in black : the variant created by uniaxial compression)

If a sample contains two martensite variants M_1 and M_2 , during the thermal evolution. Let $z = z_1 = 1 - z_2$ and the Clausius -Duhem inequality becomes

$$dD = \pi_1^f dz_1 + \pi_2^f dz_2 \ge 0 \tag{45}$$

$$dD = (\pi_1^f - \pi_2^f)dz \ge 0 \tag{46}$$

The reorientation begins when $(\pi_1^f - \pi_2^f) \ge \pi_{cr}(\mathsf{T})$ for the path (a) and when $(\pi_1^f - \pi_2^f) \le -\pi_{cr}(\mathsf{T})$ for the path (b). After the linitiation of the reorientation, the behavior is modeled with the following kinetic :

$$\dot{\pi_1}^f - \dot{\pi_2}^f = \lambda \dot{z} \text{ avec } \dot{z} = \dot{z_1} = -\dot{z_2}$$
 (47)

One can take λ as a constant or the λ value can be taken as dependent of the anterior deformation . Hence, the concept of the memory point is introduced and one makes the distinction between internal and external loops.

FIG.: Thermodynamical force as function martensite fraction $z_1 of M_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For $\pi_{cr}(T)$ function of temperature, a linear dependence is chosen

$$\pi_{cr}(T) = \pi_{cr}^{0} + k_{cr} \left(A_{s}^{0} - T \right)$$
(48)

Equivalence between the actions of the magnetic field H and the stress σ De façon classically, reorientation occurs when the thermodynamic force $\pi^{f} \star$ reaches the values π_{cr} . In the two variants model M₁ and M₂

$$\pi^{f \bigstar}(\sigma, H, z=0) = \pi_{cr} \tag{49}$$

with

$$\pi_{cr} = \sigma \gamma - K_{12} - \mu_0 m_s^2 \left(\frac{(1 - 2\alpha) \sin\theta}{\chi_t} + \frac{(2\alpha - 1)^2}{2\chi_a} + \frac{\sin^2\theta}{2\chi_t} \right)$$
(50)

Three situations must be examined

- ▲ Zone I : no saturation in α et θ
- **A**Zonell : saturation in α , *not in* θ
- ▲Zone III : saturation in α et θ

The figure allows the comparison between the measured values and the predictions with :

 $\mu_0 m_s = 0.65$ T, $\chi_t = 0.82$, $\chi_a = 4$, $\pi_{cr} + K_{12} = 2.10^4$ Pa, $\gamma = 0.055$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

FIG.: Borderline between σ and H for the initiation of reorientation $M_2 \Longrightarrow M_1$.solid line : simulation ;(x) experimental points .

Generalization to the three martensite variants and the austenitic phase . We generalize the concept of critical force $\pi_{cr}(T)$ and kinetics to the three martensite variants and to the austenitic phase. The figure represents the phase state and the kinetics associated . c_{ij} represents the transformation rate from M_i to M_i and c_{0i} from A to M_i

FIG.: Schematic representation of the kinetics.

< **∃** ► **● ● ● ● ● ●**

and the following relations are verified

$$\dot{z}_0 = c_{10} + c_{20} + c_{30} - c_{01} - c_{02} - c_{03}$$
 (51)

$$\dot{z}_1 = c_{01} + c_{21} + c_{31} - c_{10} - c_{12} - c_{13}$$
 (52)

$$\dot{z}_2 = c_{02} + c_{12} + c_{32} - c_{20} - c_{21} - c_{23} \tag{53}$$

$$\dot{z}_3 = c_{03} + c_{13} + c_{23} - c_{30} - c_{31} - c_{32}$$
 (54)

A D N A 目 N A E N A E N A B N A C N

with the c_{ij} défined by $c_{ij} = 0 \text{ if } \pi_j^f - \pi_i^f \leq \pi_{cr}(T) \text{ or } z_i = 0$ $c_{ij} = \frac{1}{\lambda} \left(\dot{\pi}_j^f - \dot{\pi}_i^f \right) \text{ otherwise}$

Different values of λ have to take into account : λ_A for the transformation $A \Rightarrow M_i$ and λ_M for $M_i \Rightarrow M_j$.

Identification of parameters

The material parameters are strongly dependent of the alloy composition . Its identification need specific measurements as for example the X-ray measurements for lattice parametersc, the DSC (differential scanning calorimétry) for phase transformation temperatures. measurements of susceptibitly , Curie temperature and last compression tests in order to know the Young modulus and hardening

"Differential scanning calorimetry"

La DSC gives us . the four phase transformation temperatures (at stress free state) : $M_f^0 M_s^0$, A_s^0 , A_f^0 . To begin with, the hysteresis curve area is equal to $-\triangle U$. As the model show by verifying $A_f^0 - A_s^0 \simeq M_s^0 - M_f^0$ one can obtain :

$$\triangle S = \frac{2 \triangle U}{A_s^0 + M_s^0} \tag{55}$$

$$A = \frac{-\triangle S \left(A_s^0 - M_s^0\right)}{2} \tag{56}$$

$$\lambda_A = -\triangle S(A_f^0 - M_s^0) \tag{57}$$

Crystallographic measurements :

The lattice parameters a_0 , a et c are obtained with X-rays

Magnetic measurements :

The curves of *m* as a function of H for different temperatures may serve to identify T_c , $m_s^0 \chi_a \chi_t \chi_A$.

Mechanical measurements :

The curves of reorientation at different temperatures lower than A_s^0 , can be taken in order to obtain $\pi_{cr}(T)$, $\lambda_M et E^{\bigstar}$.

The selected parameters are reported in table 1

$A_{S}^{o} = 309.4 \text{ K}$	$M_{S}^{o} = 301.7 \text{ K}$	$A = 5.48.10^5 \text{ J/m}^3$
$a_o = 5.84$ Å	a = 5.95 Å	c = 5.60 Å
$E = 5.10^9 { m Pa}$	$\lambda_M = 4.10^5$	K = 0
$\chi_a = 5$	$\chi_t = 1.05$	$\chi_A = 1.76$
$T_c = 370 \text{ K}$	$m_{S0} = 710 \text{ kA/m}$	$\lambda_A = 1.26.10^6 \text{ J/m}^3$
$\pi^o_{cr} = 12.10^3 \text{ J/m}^3$	$k_{cr} = 800 \text{ Pa/K}$	

Reliability of the model

FIG.: Algorithm for simulating the general behavior of an MSMA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\ensuremath{\operatorname{FiG}}$: Inputs and outputs from the digital simulation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

La figure presents the l'evolution of the déformation ε and volume fractions of variants z_i with the température T. The deformation is around 2% when the magnetic field is applied, and -4% under the influence of compressive stress. Naturally, there is not deformation in the absence of stress and magnetic field and at low temperature the fractions z_i i = 1, 2, 3 are equal (at 1/3).

FIG.: Results of our simulation of a thermal action with and without magnetic field or stress.

FIG.: Simulation of the mechanical action at high temperature (pseudo-elasticity) :T=320K

FIG.: Mechanical action at low temperature giving rise to the martensite reorientation under H = 800 kA/m.

<ロト <回ト < 回ト < 回ト

æ

 $\ensuremath{\operatorname{Fig.:}}$ Magnetization curves for different isotherms .

FIG.: Evolution of the deformation ε with the magnetic field H for different levels of applied stress.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FIG.: Evolution of the deformation and magnetization under a fixed stress $\sigma = -1$ MPa.Experiments performed by Straka et al..

(日) (四) (日) (日) (日)

FIG.: .Evolution of the deformation and magnetization under a fixed stress $\sigma = -1$ MPa.Modeling of experiments performed by Straka et al.

FIG.: Photograph of the "Push-Pull" actuator.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

FIG.: Principle of operation of Push-Pull actuator.

A D > A P > A B > A B >

э

FIG.: Photograph of three films deposited at 298 $^{\circ}$ K and annealed during 21.6 ks and 36 ks at 873 K respectively. (The arrows indicate the directions of rolling).