Séminaire Épiphymaths

Jeudi de 9h30 à 11h en salle 316Bbis au Laboratoire de mathématiques de Besançon

Épiphymaths est un mot-valise pour Épistémologie, physique, mathématiques.

Thèmes de l’année

[Thèmes 2023-2024] [Thèmes 2023-2024]

Programme

Pour le programme, les abonné·e·s à la liste Épiphymaths peuvent consulter aussi les messages de la liste.

Jeudi 23 mai : Rémi BRENDEL. On n’en croit pas ses yeux.

Hering, Müller-Lyer, Ebbinghaus, Wundt & Fick, Ponzo, Oppel & Kundt, Kanizsa, Jastrow… sont tous des scientifiques qui ont associé leur nom à de célèbres illusions d’optique.

L’exposé, principalement basé sur des illustrations, montre comment le cerveau peut être trompé par des images et tente d’en expliquer le mécanisme.

Jeudi 16 mai : Henri Lombardi. Qu’est-ce qu’une démonstration convaincante ?

Je discute quelques exemples de démonstrations mathématiques et l’on se pose des questions quant à leur force de conviction (telle démonstration est-elle vraiment convaincante ?), et quant à la beauté ou l’utilité du résultat.

Il n’est nul besoin pour cela de faire appel à des mathématiques considérées comme difficiles. Une fois la discussion lancée, les participants pourront proposer les exemples qu’elles considèrent comme plus ou moins troublants.

La thèse défendue (en suivant Bishop) est que les mathématiques sont avant tout une question de « sens commun » et que seule la discussion contradictoire au sein de la communauté mathématique permet de « mettre les choses au clair », autant que faire se peut.

Jeudi 2 mai : Gauvain Leconte-Chevillard. « L’accélérateur de particules du pauvre » : comment transformer l’Univers en laboratoire cosmique.

« L’Univers est l’accélérateur de particules du pauvre » : c’est ainsi que le physicien soviétique Yakov Zelʹdovich décrivait en 1987 « la nouvelle direction » qu’avait prise la cosmologie dans les années 1970. S’agit-il uniquement d’une métaphore d’un physicien nucléaire reconverti en cosmologiste ? Ou peut-on réellement considérer que les méthodes des sciences expérimentales sont utilisables en cosmologie et transforment l’Univers en laboratoire cosmique ?

Au premier abord, il semble difficile de concevoir la cosmologie comme une science expérimentale. « L’expérimentation galactique c’est de la science-fiction, et l’expérimentation extra-galactique, ce n’est qu’une mauvaise blague » écrivait le philosophe canadien Ian Hacking dans un article de 1989 visant à montrer que la méthode de l’astronomie était profondément différente de la méthode expérimentale. Mais dans cette présentation, je montre que la thèse d’une cosmologie expérimentale n’a rien d’absurde si l’on abandonne la conception traditionnelle de l’expérimentation qui présente plusieurs défauts. En utilisant une définition non-anthropocentrée de la méthode expérimentale comme celle du philosophe étatsunien James Woodward, il est au contraire possible de rendre compte du fait que les astronomes utilisent certains systèmes astrophysiques (par exemple les lentilles gravitationnelles) comme des expériences naturelles pour manipuler d’autres phénomènes.

J’examine ensuite les objections que Woodward a lui-même formulées contre l’idée que l’on puisse étendre sa conception de l’expérimentation à l’Univers tout entier et je montre que ces objections n’empêchent pas de penser qu’il puisse exister des expériences naturelles en cosmologie. J’étudie enfin deux cas qui correspondent à des utilisations expérimentales de l’Univers entier : la limitation du nombre de types de leptons dans les années 1970 et la mesure de la courbure globale de l’espace à partir des données du fond diffus cosmologique dans les années 2000.

Jeudi 11 avril : Relâche pour le stage IREM Mathématiques et philosophie sur Le cadre et la marge.

Jeudi 4 avril : Naoum Daher. Sur le vrai, le beau et le bien en science physique.

Cette présentation fait suite à celle exposée au séminaire Épiphymaths le 1er février 2024, sur le vrai, le beau et le bien, rappelée dans la première partie de ce fichier. Celle-ci a été augmentée (seconde partie et notes) et clarifiée en tenant compte des remarques qui m’avaient été adressées lors de cet exposé. L’accent est placé ici sur quelques idées relatives à la vérité scientifique ainsi qu’à l’esthétique et l’éthique correspondantes; idées appliquées à la dynamique [1-5], colonne vertébrale de la physique, de par son lien direct aux principes de relativité et de conservation (deux piliers de la science physique). En s’affranchissant de ce cadre dynamique restreint, ces idées pourraient être utiles dans d’autres domaines.

Jeudi 28 mars : Michaël Klopfenstein. La conscience humaine dans un monde matériel ? (suite).

Cette question soulève un dilemme important : d’un côté, une forte hétérogénéité semble exister entre la nature de la conscience et la matière, comment des entités mécaniques pourraient-elles donner réalité à une conscience qui ressent le monde ? Ou encore : quelle que soit la complexité des calculs, comment une « machine matérielle » pourrait-elle engendrer le ressenti en propre de son vécu, comment une matière qui ne ressent pas pourrait-elle faire naître une pensée intérieure ? De l’autre côté, une continuité relie la matière physique à la matière vivante, elle-même liée à l’animalité puis à l’humanité. Cela nous presse à penser que l’homme est un être de matière et que sa pensée et sa conscience sont dues à une structure particulière de son organisation matérielle.

Pour résoudre cette forte tension, les solutions proposées sont nombreuses : une réalité profonde non mise à jour qui complète l’insuffisance matérielle; la mécanique quantique comme creuset des mystères naturels; l’essence continue du monde physique; la transcendance de la conscience vis à vis de la matière; une structure matérielle spécifique qui donnerait corps à la conscience…

Prendre appui sur des mystères, c’est renoncer à comprendre. Malgré sa difficulté, et même peut-être sa faiblesse, cette dernière solution tente de s’en affranchir. J’aimerais modestement exposer une solution de cette sorte, en espérant éclairer à la fois le « pourquoi » et le « comment » de la forte hétérogénéité qui existe entre matière et conscience.

Jeudi 21 mars : Olivier Fouquet. Même le cycéon (caractérisation épistémologique des mathématiques) (suite).

Je fera un résumé de la thèse de l’exposé de la semaine précédente et énoncerai sous forme de question une thèse similaire pour la physique. Ensuite, nous aurons une discussion libre sur ces sujets.

Jeudi 14 mars : Olivier Fouquet. Même le cycéon (caractérisation épistémologique des mathématiques).

Cette séance est peut-être plus proche de la philosophie que les autres de cette année. Comme le suggère le titre volontairement mystérieux (il s’agit d’un fragment d’Héraclite cité par Théophraste), je proposerai une caractérisation épistémologique constructiviste des énoncés mathématiques inspirée (un peu paradoxalement) par les réponses apportées par Héraclite à des questions posées 2530 ans plus tard dans les Remarques sur les fondations des mathématiques de Wittgenstein.

Jeudi 15 février : Laurent Hirsinger. Dualisation des équations d’équilibre en physique : ce qui se pratique en mécanique ! (suite).

Jeudi 8 février : Laurent Hirsinger. Dualisation des équations d’équilibre en physique : ce qui se pratique en mécanique !

Jeudi 1er février : Naoum Daher. Sur le vrai, le beau et le bien en science physique.

Jeudi 25 janvier : Olivier Fouquet. Le meilleur des mondes ? (ou : L’applicabilité des mathématiques comme problème philosophique) (suite).

Entre 1850 et 1970, deux développements majeurs venus des mathématiques elles-mêmes ont changé radicalement l’apparence philosophique de cette discipline. D’une part, la formalisation de l’analyse et de la théorie des ensembles ont mené aux travaux de Cantor, à ’effort d’axiomatisation des mathématiques et de là aux résultats de Gödel et à la technique du forcing. Ce développement a eu une influence considérable sur l’épistémologie des mathématiques. D’autre part, les conjectures de Riemann, Dedekind et Ramanujan ont ouvert la voie à une réorganisation de certaines branches des mathématiques autour de grands problèmes conjecturaux. Dans cet exposé, je décrirai quelques problèmes épistémologiques que ce développement me semble soulever.

Jeudi 18 janvier : Olivier Fouquet. Le meilleur des mondes ? (ou : L’applicabilité des mathématiques comme problème philosophique).

Jeudi 21 décembre : Daniel Van Labeke. Expériences de Wiener : à quelle grandeur physique correspond l’intensité d’un signal lumineux ? (suite).

Jeudi 14 décembre : Daniel Van Labeke. Expériences de Wiener : à quelle grandeur physique correspond l’intensité d’un signal lumineux ? (suite).

Jeudi 7 décembre : Daniel Van Labeke. Expériences de Wiener : à quelle grandeur physique correspond l’intensité d’un signal lumineux ?

La question suggérée par le titre de cet exposé revient de façon récurrente dans les séminaires Épiphymaths et elle a fait l’objet à chaque fois d’une discussion animée.

En fait cette question a été tranchée en 1890 par Otto Wiener qui a réalisé une expérience délicate et concluante.

Au début du 19e siècle, des expériences d’interférence et de diffraction sont réalisées avec de la lumière. Fresnel bâtit un formalisme ondulatoire permettant de calculer l’intensité lumineuse de ces expériences. Pour Fresnel, l’onde lumineuse est une vibration dans un milieu continu, existant même dans le vide. Aussi l’intensité lumineuse en un point est proportionnelle à l’énergie de la vibration des « atomes » d’éther (donc au carré de l’amplitude des oscillations de l’éther).

Le problème se complique avec les expériences de polarisation par réflexion et/ou biréfringence (Malus, Fresnel, Arago…). Cependant, Fresnel et Arago montrent que la lumière est une vibration transversale, sans aller au delà pour la nature du vecteur lumineux. Le formalisme de Fresnel est parfaitement vérifié par les expériences.

Mais tout va changer avec Maxwell. En 1864, en ajoutant une équation aux équations de ses prédécesseurs en électricité et au magnétisme, il unifie ces deux domaines de la physique et crée l’électromagnétisme. Il « invente » les ondes électromagnétiques, calcule leur vitesse, et surtout il démontre que la lumière est une onde électromagnétique.

Très vite les physiciens (Hertz…) font des expériences sur ces ondes radio : interférences, diffraction, polarisation, mesure de la vitesse. Dans ces expériences, suivant le type de détecteur, on mesure soit le champ électrique soit le champ magnétique de l’onde.

Mais une question demeure non résolue : « en optique, quel est le vecteur lumineux ? » : champ électrique, champ magnétique, vecteur de Poynting… ?

En 1890, par une expérience originale d’onde stationnaire en optique, Otto Wiener répond à cette question : « l’intensité lumineuse, visible par l’œil humain ou par la plaque photographique, est proportionnelle au module carré du champ électrique de l’onde. »

L’exposé fera l’historique de cette expérience en donnant les compléments théoriques permettant de comprendre son contexte et d’interpréter ses résultats.

La question va être réouverte dans les années 2000, quand des expériences de nano-optique vont mettre des détecteurs d’un nouveau type immergés dans le champ proche, à quelques nanomètres au dessus de surfaces structurées. Nous décrirons ces nouvelles « expériences de Wiener ».

Un exemple peut être examiné sur les figures de l’article « Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna » paru en 2012.

Jeudi 23 novembre : Jean-Marie Vigoureux. Que dire encore de la théorie quantique ? (session 2, épisode 2).

Que dire encore de la théorie quantique ? La comparaison des structures formelles de la relativité restreinte et de la théorie quantique peut-elle nous suggérer des pistes et éclairer la question de l’intrication et de la non-séparabilité ?

Jeudi 16 novembre : Jean-Marie Vigoureux. Que dire encore de la théorie quantique ? (session 2, épisode 1).

Jeudi 26 octobre : Alva Gaudin. L’espace de la danse.

Durant cette séance, nous explorerons l’espace que propose la danse et essaierons de le composer avec l’espace tel qu’il est abordé par les scientifiques. Comment l’un et l’autre s’éclairent mutuellement et, peut-être, ouvrent des voies d’expérimentations croisées.

Jeudi 19 octobre : Stefan Neuwirth. Analyse prédicative et théorème de Cantor-Bendixson (suite).

Pour expliquer ce que sont analyse prédicative et analyse imprédicative, je vais réfléchir aux conséquences d’un traitement systématique des coupures (1) comme des prédicats définis sur les nombres rationnels; (2) comme des ensembles de nombres rationnels. C’est seulement une fois ceci acquis que je vais passer au théorème de Cantor-Bendixson.

Jeudi 12 octobre : Stefan Neuwirth. Analyse prédicative et théorème de Cantor-Bendixson.

J’ai esquissé la démarche de Dedekind qui modélise la droite géométrique en deux étapes : (1) munir la droite d’un repère qui permet de poser des points « rationnels » sur la droite; (2) définir la notion de « coupure », c’est-à-dire une répartition des points rationnels « de part et d’autre d’une “coupure” ».

Jeudi 5 octobre : Rentrée du séminaire.

Publications et archives

Accéder aux publications du séminaire.

Voir le programme 2008-2009, 2009-2010, 2010-2011, 2011-2012, 2012-2013, 2013-2014, 2014-2015, 2015-2016, 2016-2017, 2017-2018, 2018-2019, 2019-2020, 2020-2021, 2021-2022, 2022-2023.

Accéder aux prises de note du séminaire.